Ирина Якутенко - Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать
- Название:Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:978-5-0013-9400-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ирина Якутенко - Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать краткое содержание
Что мы знаем о SARS-CoV-2, почему он убивает одних и бессимптомно проходит у других, безопасна ли вакцина и когда будет найдено лекарство, как мы лечим COVID-19 без него, можно ли бороться с патогеном, не закрывая планету, — книга отвечает на эти и многие другие вопросы. Хотя пандемия еще не закончилась, и мы все время получаем новые данные о вирусе, изложенные в тексте фундаментальные основы уже не поменяются: они служат каркасом, на который читатель сможет нанизывать новые знания.
Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Безусловно, нельзя исключать, что и антительного ответа будет достаточно для хорошей защиты, но здесь скрывается еще один подвох. Чаще всего в качестве мишени, которая будет использоваться для обучения иммунитета, создатели вакцин выбирают S-белок (он же спайк-белок). Он отвечает за связывание вирусной частицы с клеточным рецептором ACE2, и если, грубо говоря, залепить спайк снаружи антителами, то вирус не сможет инфицировать клетки. Поэтому многие антитела против S-белка являются нейтрализующими. Кроме того, спайк-белок далеко выступает над поверхностью вирусной оболочки и собирает на себя множество антител. Однако, когда ученые проверили, какие именно антитела, выработавшиеся у переболевших COVID-19, нейтрализуют вирус, оказалось, что это не только иммуноглобулины к разным участкам S-белка, но еще как минимум антитела против белка нуклеокапсида, то есть N-белка [314] Там же.
. Этот белок не так сильно выдается за пределы вирусной оболочки, поэтому антителам сложнее уцепиться за него. А если этого не происходит, то не запускается цепочка реакций подстройки антител под конкретный вирусный эпитоп (мы подробно обсуждали ее в главе «Что коронавирус делает с нами») и нейтрализующие антитела не формируются. Так что создатели вакцин предпочитают не рисковать и использовать в качестве антигена исключительно спайк {52} 52 Теоретически у настоящего вируса S-белок может отличаться от спайка из векторных и тем более субъединичных вакцин — например, S-белок может быть прикрыт от иммунной системы другими структурами вирусной оболочки. Чтобы убедиться, что антитела, выработанные в результате вакцинации, узнают спайк-белок в боевых условиях, с кровью привитых добровольцев проводят тест на нейтрализацию вируса, то есть добавляют плазму с антителами к содержащему вирус раствору, оставляют на некоторое время для реакции, а затем капают этот раствор на культуры клеток. Если после проделанных манипуляций вирус теряет способность инфицировать клетки — значит, в плазме были нейтрализующие антитела.
. Такой ограниченный спайком иммунный ответ будет заведомо отличаться от естественного, и мы пока не знаем, насколько это критично. Возможно, антител только против S-белка будет достаточно для стойкой защиты, но нельзя исключать, что без иммуноглобулинов к другим белкам оболочки защита будет неполной.
Фактов, которые бы со стопроцентной убедительностью доказывали, что антител к спайк-белку достаточно для полноценной защиты, пока нет. Они появятся лишь после того, как значительная часть людей получат вакцину, генерирующую только анти-S-антитела. Тем не менее, множество косвенных данных указывают, что иммуноглобулины против спайк-белка, похоже, действительно хорошо предохраняют от реинфекции. Например, в одной из работ авторы регулярно брали образцы крови у переболевших из Китая, которые подхватили вирус раньше всех остальных. Ученые проверяли, как меняется уровень IgG и IgM против S- и N-белков коронавируса, и проводили тесты на нейтрализацию. Исследователи занимались этим в течение полугода, и все это время именно наличие иммуноглобулинов типа G против спайк-белка лучше всего предсказывало, будет ли обезврежен вирус [315] E. Brochot et al. , «Anti-Spike, anti-Nucleocapsid and neutralizing antibodies in SARS-CoV-2 inpatients and asymptomatic carriers», medRxiv , p. 2020.05.12.20098236, Jan. 2020.
. Другими словами, чем больше в плазме переболевших было IgG против S-белка, тем лучше была защита — по крайней мере, в лабораторных условиях.
Есть и еще одна проблема. S-белок — главный инструмент, при помощи которого вирус проникает в новые клетки, и он мутирует быстрее других структурных белков SARS-CoV-2 [316] J. Wu et al ., «SARS-CoV-2 infection induces sustained humoral immune responses in convalescent patients following symptomatic COVID-19», medRxiv , p. 2020.07.21.20159178, Jan. 2020.
. Самые вариабельные фрагменты спайк-белка — как раз те, что отвечают за связывание с рецептором ACE2 [317] R. Wang, Y. Hozumi, C. Yin, and G.-W. Wei, «Decoding SARS-CoV-2 Transmission and Evolution and Ramifications for COVID-19 Diagnosis, Vaccine, and Medicine», J. Chem. Inf. Model., p. acs.jcim.0c00501, Jun. 2020.
. Именно их чаще всего выбирают в качестве вакцинных антигенов — опять-таки потому, что, «перекрыв» их антителами, мы остановим вторжение вируса. Получается, что ученые создают вакцину, направленную на самый нестабильный участок вирусной оболочки. И в случае если он сильно изменится — а вероятность этого выше, чем вероятность заметных изменений в других оболочечных белках, — вакцина перестанет работать. Более того, несоответствие выработанных в ответ на вакцину нейтрализующих антител новой топографии вируса теоретически может привести к редкому, но крайне неприятному осложнению под названием антителозависимое усиление инфекционности (АЗУИ), или, по-английски, antibody dependent enhancement (ADE). Коротко суть ADE в следующем: если в организме есть антитела к вирусу, но они не совсем «правильные», при встрече с ним вместо защитного эффекта может произойти ровно обратное и болезнь начнет развиваться по худшему сценарию.
Причиной ADE является уникальная способность нашей иммунной системы ювелирно подстраивать антитела под конкретный эпитоп конкретного патогена. Как вы помните, изначально в организме предсуществуют миллионы вариантов антител, худо-бедно узнающих самые разные вирусные фрагменты, с которыми может встретиться организм. Но это первичное связывание чаще всего непрочно. Поэтому вслед за первым контактом с патогеном начинается процесс созревания антител: гены B-лимфоцитов, отвечающие за синтез узнающей вражеский эпитоп части антител, начинают со страшной скоростью мутировать, порождая всё новые и новые варианты антител. Некоторые из них оказываются более липучими (прочнее связывают патоген), и дальше перетасовывать гены начинают только те лимфоциты, которые синтезируют именно эти антитела. Процесс повторяется много раз, пока наконец не появятся антитела, идеально подходящие к тому или иному месту на поверхности вируса.
Часть из таких сверхлипучих антител окажутся нейтрализующими: они заблокируют тот участок патогена, благодаря которому он проникает в клетку. Рано или поздно обездвиженный вирус обнаружат иммунные клетки-пожиратели вроде макрофагов, среагировав на торчащие с вирусной поверхности ножки антител. При помощи узнающих ножки рецепторов макрофаг захватывает облепленную антителами вирусную частицу, втягивает внутрь и в буквальном смысле переваривает в особых пузырьках. Но если вирус мутирует и участок, к которому сформировались нейтрализующие антитела, изменится, связывание станет не таким прочным. И когда комплекс вирус — антитело окажется внутри макрофага, вирусные частицы могут оторваться от антитела и начать безобразничать. Другими словами, если участок связывания нейтрализующего антитела изменится, бывший «спецназ» становится проводником вирусов в иммунные клетки, куда обычно они проникнуть не могут.
Читать дальшеИнтервал:
Закладка: