Георг Гегель - Наука логики. Том I. Объективная логика

Тут можно читать онлайн Георг Гегель - Наука логики. Том I. Объективная логика - бесплатно ознакомительный отрывок. Жанр: Философия. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Наука логики. Том I. Объективная логика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Георг Гегель - Наука логики. Том I. Объективная логика краткое содержание

Наука логики. Том I. Объективная логика - описание и краткое содержание, автор Георг Гегель, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
empty-line
1

Наука логики. Том I. Объективная логика - читать онлайн бесплатно ознакомительный отрывок

Наука логики. Том I. Объективная логика - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Георг Гегель
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Полученное этим путем конечное уравнение, в котором коэфициент второго члена квадратного уравнения равен удвоенному корню или неизвестному, есть то же самое уравнение, которое находят посредством приема, применяемого диференциальным исчислением. Уравнение Наука логики Том I Объективная логика - изображение 86после его диференцирования дает новое уравнение Наука логики Том I Объективная логика - изображение 87; а уравнение Наука логики Том I Объективная логика - изображение 88дает картинка 89. Но при этом напрашивается замечание, что отнюдь не само собою разумеется, что такое производное уравнение также и правильно. При уравнении с двумя переменными величинами, которые от того, что они переменные, все-таки не теряют характера неизвестных величин, получается, как мы указали выше, лишь некоторое отношение , по тому указанному простому основанию, что замещение самих степеней функциями возвышения в степень изменяет значение обоих членов уравнения, и само по себе еще неизвестно, имеет ли еще место между ними уравнение при таком измененном значении. Уравнение картинка 90ничего другого вовсе и не выражает, кроме того, что P есть некоторое отношение , и не надо приписывать картинка 91никакого другого реального смысла. Но об этом отношении картинка 92также еще неизвестно, какому другому отношению оно равно; лишь такое уравнение, пропорциональность , впервые сообщает ему численное значение и смысл. — Точно так же как (что было указано выше) то значение, которое называли приложением, берется извне, эмпирически, так и в тех полученных путем диференцирования уравнениях, о которых идет речь, для того, чтобы знать, верны ли еще полученные уравнения, должно быть известно из какого-то другого источника, имеют ли они одинаковые корни. Но на это обстоятельство в учебниках не дается определенных и ясных указаний; оно устраняется тем, что уравнение с одним неизвестным ( x ), приведенное к нулю, тотчас же приравнивается к другому неизвестному ( y ), откуда затем при диференцирования получается, конечно, картинка 93, которое есть только некоторое отношение. Исчисление функций, конечно, должно иметь дело с функциями возвышения в степень, а диференциальное исчисленное с диференциалами, но из этого само по себе отнюдь еще не следует, что величины, диференциалы или функции возвышения в степень которых мы берем, сами также должны быть лишь функциями других величин. И кроме того в теоретической части, там, где даются указания, как должны быть выведены диференциалы, еще нет и мысли о том, что величины, оперировать с которыми согласно такому способу их вывода она учит, сами должны быть функциями других величин.

Относительно отбрасывания констант при диференцировании можно еще обратить внимание читателя на то, что это отбрасывание имеет здесь тот смысл, что константа оказывается безразличной для определения корней в случае их равенства, каковое определение исчерпывается коэфициентом второго члена уравнения. Так, в приведенном примере Декарта константа есть квадрат самого корня, следовательно, последний может быть определен как из константы, так и из коэфициентов, поскольку вообще как она, так и коэфициенты суть функции корней уравнения. В обычном изложении опущение так называемых констант (связанных с прочими членами лишь посредством знаков + и –) достигается простым механизмом приема, состоящего в том, что для нахождения диференциала сложного выражения приращение сообщается лишь переменным величинам и сформированное благодаря этому выражение вычитается из первоначального. Смысл констант и их отбрасывания, вопрос о том, в какой мере они сами суть функции и нужны ли они или не нужны со стороны этого определения, не подвергается обсуждению.

С отбрасыванием констант находится в связи одно замечание, которое можно сделать относительно названий диференцирования и интегрирования, замечание, сходное с тем, которое мы сделали раньше относительно наименований «конечное» и «бесконечное выражение» (52), а именно, что в их определении содержится скорее противоположное тому, что выражается этими названиями. Диференцирование означает полагание разностей; но диференцирование, наоборот, уменьшает число измерений уравнения и в результате отбрасывания константы устраняется один из моментов определенности; как мы уже заметили, корни переменной величины приравниваются, их разность , следовательно , устраняется . Напротив, при интегрировании следует снова присоединить константу; уравнение благодаря этому несомненно интегрируется, но в том смысле, что ранее устраненная разность корней восстанавливается , положенное равным снова диференцируется. — Обычный способ выражения способствует тому, чтобы оставить в тени существенную природу предмета и все сводить к подчиненной и даже чуждой главной стороне дела точке зрения отчасти бесконечно-малой разности, приращения и т. п., отчасти же голой разности вообще между данной и производной функцией, не обозначая их специфического, т. е. качественного различия.

Другую главную область, к которой прилагается диференциальное исчисление, представляет механика ; попутно мы отчасти уже касались смысла различных степенных функций, получающихся при элементарных уравнениях ее предмета, движения ; здесь я буду говорить о них непосредственно. Уравнение, а именно математическое выражение просто равномерного движения картинка 94или картинка 95, в котором пройденные пространства пропорциональны протекшим временам по некоторой эмпирической единице c , величине скорости, не имеет смысла диференцировать; коэфициент с уже совершенно определен и известен, и здесь не может иметь места никакое дальнейшее развертывание степени, никакое дальнейшее разложение в ряд. — Как анализируется картинка 96, уравнение движения падения тел, об этом мы уже вкратце сказали выше; первый член анализа картинка 97выражается словесно и, следовательно, понимается, как существующий реально таким образом, что он есть член некоторой суммы (каковое представление мы уже давно устранили), одна часть движения и притом та часть его, которая приписывается силе инерции, т. е., просто-равномерной скорости таким образом, что в бесконечно-малых частях времени движение принимается за равномерное , а в конечных частях времени, т. е. в существующих на самом деле, — за неравномерное. Разумеется, картинка 98и значение a и t , взятых сами по себе, известно, равно как известно и то, что этим самым дано определение скорости равномерного движения: так как картинка 99, то вообще картинка 100; но этим мы нисколько не подвинулись вперед в нашем знании; лишь ложное предположение, будто картинка 101есть часть движения как некоторой суммы , дает ложную видимость физического предложения. Самый множитель, a , эмпирическая единица — некоторое определенное количество, как таковое — приписывается тяготению; если здесь применяют категорию силы тяготения, то нужно сказать, что, наоборот, как раз целое картинка 102есть действие или, лучше сказать, закон тяготения. — То же самое верно и относительно выведенного из картинка 103положения, гласящего, что если бы прекратилось действие силы тяжести, то тело со скоростью, приобретенной им в конце своего падения, прошло бы во время, равное времени его падения, пространство вдвое большее пройденного. — В этом положении заключается также и сама по себе превратная метафизика: конец падения или конец той части времени, в которое падало тело, всегда сам еще есть некоторая часть времени; если бы он не был таковой частью, то наступил бы покой и, следовательно, не было бы никакой скорости; скорость может быть установлена лишь по пространству, пройденному в некоторую часть времени, а не в конце ее. Если же кроме того и в других физических областях, где вовсе нет никакого движения, как например относительно поведения света (помимо того, что называют его распространением в пространстве) и относительно определений величин в цветах, применяют диференциальное исчисление и первая производная функция некоторой квадратной функции здесь также именуется скоростью, то на это следует смотреть, как на еще более несостоятельный формализм выдумывания существования. —

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Георг Гегель читать все книги автора по порядку

Георг Гегель - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наука логики. Том I. Объективная логика отзывы


Отзывы читателей о книге Наука логики. Том I. Объективная логика, автор: Георг Гегель. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x