Станислав Лем - Собрание сочинений в 10 томах. Том 13. Сумма технологии

Тут можно читать онлайн Станислав Лем - Собрание сочинений в 10 томах. Том 13. Сумма технологии - бесплатно ознакомительный отрывок. Жанр: Философия, издательство Текст, год 1996. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Собрание сочинений в 10 томах. Том 13. Сумма технологии
  • Автор:
  • Жанр:
  • Издательство:
    Текст
  • Год:
    1996
  • Город:
    М.
  • ISBN:
    5-7516-0072-X
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Станислав Лем - Собрание сочинений в 10 томах. Том 13. Сумма технологии краткое содержание

Собрание сочинений в 10 томах. Том 13. Сумма технологии - описание и краткое содержание, автор Станислав Лем, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Собрание сочинений в 10 томах. Том 13. Сумма технологии - читать онлайн бесплатно ознакомительный отрывок

Собрание сочинений в 10 томах. Том 13. Сумма технологии - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Станислав Лем
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы знаем уже, что означает «выражение среды». Это накопление структурной, а не селективной информации. Быть может, наши повторения столь же излишни, сколь и утомительны, но скажем это еще раз. Инженер-связист исследует вероятность поступления информации таким образом, что для него в стобуквенной фразе содержится одинаковое количество информации независимо от того, взята эта фраза из газеты или из теории Эйнштейна. Такой аспект наиболее важен при передаче информации. Однако о количестве информации можно говорить и в том смысле, что фраза описывает (отображает) некую более или менее вероятную ситуацию. Тогда информационное содержание фразы зависит не от вероятности появления тех или иных букв в данном языке и не от их общего количества, а только от степени вероятности самой ситуации.

Отношение фразы к реальному миру не имеет значения для ее передачи по каналу связи, но становится решающим при оценке информации, содержащейся, например, в научном законе. Мы займемся «выращиванием» только информации этого второго рода, которая называется структурной.

«Обычные» химические молекулы не выражают ничего или «выражают только себя», что одно и то же. Нам нужны такие молекулы, которые были бы и собой и одновременно отображением чего-то вне себя (моделью). Это вполне возможно, так как, например, определенное место в хромосоме «выражает само себя», то есть является частью дезоксирибонуклеиновой кислоты, но, кроме того, «выражает» тот факт, что организм, возникший из этой хромосомы, будет иметь, допустим, голубые глаза. Правда, «выражает» оно этот факт лишь как элемент целостной организации генотипа.

Как же следует теперь понимать «отображение среды» гипотетическими «организмами-теориями»? Среда, которую исследует наука, — это все существующее, то есть мир целиком, но не все в нем сразу. Сбор информации состоит в том, что в этом мире избираются определенные системы и исследуется их поведение. Некоторые явления — звезды, растения, люди — таковы, что сами напрашиваются в качестве систем, другие (туча, молния) лишь с виду обладают подобной автономией, относительной независимостью от окружения.

Признаемся теперь, что нашу «информационную эволюцию» мы начнем отнюдь не на пустом месте; иначе говоря, мы не собираемся создавать нечто такое, что сначала должно будет «само» достичь уровня человеческого познания и лишь потом идти дальше. Я не знаю, так ли уж это невозможно; вероятно, нет; но, во всяком случае, такая эволюция «от нуля» потребовала бы массу времени (может, даже не меньшую, чем биологическая эволюция). Но это ведь совершенно не нужно. Мы сразу воспользуемся нашими сведениями, в том числе и относящимися к выделению классов (мы знаем, что является системой, достойной изучения, а что нет). Будем рассчитывать на то, что некоторое время мы, возможно, не добьемся феноменальных открытий, что они придут позднее, когда наша «ферма» окрепнет. К решению будем идти методом последовательных приближений.

«Ферму» можно запроектировать различным образом. Как бы предварительной моделью для нее является куча речного гравия в качестве «генератора разнородности», а также «селектор» — избирательное устройство, особо чувствительное к «регулярности». Если селектор представляет собой ряд перегородок с круглыми отверстиями, то на «выходе» мы получим только круглые голыши, потому что другие через «фильтр» не пройдут. Мы получим определенный порядок из беспорядка (из галечного «шума»), но округлые камешки ничего, кроме самих себя, не представляют. А информация — это представление. Поэтому селектор ориентироваться на «свойство в себе» не может; он может ориентироваться только на что-то, находящееся вне его. А значит, он должен быть подключен, с одной стороны, как фильтр к генератору «шума», а с другой — к некоему участку внешнего мира [215].

На концепции «генератора разнородности» основана идея У. Росса Эшби о создании «усилителя мыслительных способностей». Эшби заявляет, что любые научные законы, математические формулы и т.п. могут генерироваться устройством, которое действует совершенно хаотически. Так, например, мотылек, трепеща крыльями над цветком, может совершенно случайно передать бином Ньютона. Более того, таких диковинных случайностей вовсе не придется выжидать. Поскольку любую ограниченную информацию, а значит, и бином Ньютона, можно передать в двоичном коде с помощью нескольких десятков символов, то в каждом кубическом сантиметре воздуха его молекулы в процессе своего хаотического движения передают эту формулу несколько сот тысяч раз в секунду. В действительности так и происходит.

Эшби делает нужную прикидку. Отсюда уже прямой вывод, что в воздухе моей комнаты, пока я это пишу, носятся конфигурации молекул, выражающие на языке двоичного кода бесчисленное множество других ценнейших формул, в том числе и формулировки по затронутому мной вопросу, но гораздо более ясные и точные, чем мои. А что уж говорить об атмосфере всей Земли? В ней возникают на доли секунды и тотчас распадаются гениальные истины науки пятитысячного года, стихи и пьесы Шекспиров, которым лишь предстоит родиться, тайны иных космических систем и бог знает что еще.

Что же из этого следует? К сожалению, ничего, поскольку все эти «ценные» результаты миллиардов атомных столкновений перемешаны с биллионами других, совершенно бессмысленных. Эшби говорил, что новые идеи сами по себе — ничто, коль скоро их можно создавать пудами и гектарами при помощи таких «шумовых», таких случайных процессов, как столкновения атомов газа, а что все решает отбор, селекция. Эшби стремится таким путем доказать, что возможно создать «усилитель мыслительных способностей» как селектор идей, которые поставляет любой шумовой процесс. Наш подход иной; я привел суждения Эшби, желая показать, что к целям сходным (хотя и не одинаковым — «усилитель» есть нечто отличное от «фермы») можно идти противоположными путями. Эшби полагает, что нужно исходить из наибольшей разнородности и постепенно «фильтровать» ее. Мы, напротив, стремимся начать с разнородности хоть и большой, но не огромной — такой, которую демонстрирует материальный самоорганизующийся процесс (например, оплодотворенная яйцеклетка), и добиться того, чтобы этот процесс «развился» в научную теорию. Может быть, его сложность при этом возрастет, а может, и уменьшится, это для нас не самое важное.

Заметим, что в определенном смысле «генератор разнородности», постулированный Эшби, уже существует.

Можно сказать, что математика неустанно создает бесчисленные «пустые» структуры, а физики и другие ученые, непрерывно обшаривая этот склад разнородности (то есть различные формальные системы), время от времени находят там что-нибудь практически применимое, «подходящее» для определенных материальных явлений. Булева алгебра появилась раньше, чем какие-либо сведения о кибернетике; потом оказалось, что мозг тоже пользуется элементами этой алгебры, и на ее принципах основана сейчас работа цифровых машин. Кэли изобрел матричное исчисление за несколько десятилетий до того, как Гейзенберг заметил, что его можно применить в квантовой механике. Адамар рассказывает о некой формальной «пустой» системе, которой он занимался как математик, и не помышлял, что она может иметь что-либо общее с действительностью, и которая впоследствии пригодилась ему в эмпирических исследованиях. Таким образом, математики воплощают генератор разнородности, а эмпирики — селектор, постулированный Эшби.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Станислав Лем читать все книги автора по порядку

Станислав Лем - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Собрание сочинений в 10 томах. Том 13. Сумма технологии отзывы


Отзывы читателей о книге Собрание сочинений в 10 томах. Том 13. Сумма технологии, автор: Станислав Лем. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x