Станислав Лем - Собрание сочинений в 10 томах. Том 13. Сумма технологии

Тут можно читать онлайн Станислав Лем - Собрание сочинений в 10 томах. Том 13. Сумма технологии - бесплатно ознакомительный отрывок. Жанр: Философия, издательство Текст, год 1996. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Собрание сочинений в 10 томах. Том 13. Сумма технологии
  • Автор:
  • Жанр:
  • Издательство:
    Текст
  • Год:
    1996
  • Город:
    М.
  • ISBN:
    5-7516-0072-X
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Станислав Лем - Собрание сочинений в 10 томах. Том 13. Сумма технологии краткое содержание

Собрание сочинений в 10 томах. Том 13. Сумма технологии - описание и краткое содержание, автор Станислав Лем, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Собрание сочинений в 10 томах. Том 13. Сумма технологии - читать онлайн бесплатно ознакомительный отрывок

Собрание сочинений в 10 томах. Том 13. Сумма технологии - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Станислав Лем
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В «сите» происходит реакция, подобная осаждению антигенов антителами в серологии. Но осаждение происходит на основе различия между «истиной» и «ложью». Осаждаются все частицы, которые правильно предсказывали явление, поскольку их молекулярная структура «согласуется» с молекулярной структурой ловушки на частицах, высылаемых «ситом». Осажденные носители как «правильно предсказавшие» состояние явления поступают на следующую селекцию, где процесс повторяется (они снова сталкиваются с частицами, несущими сведения об очередном состоянии явления; частицы-носители, правильно «предугадавшие» это состояние, вновь осаждаются и так далее). В конце концов мы получаем определенное количество частиц, которые представляют собой изодинамическую, селекционированную модель развития всего явления. Зная их начальный химический состав, мы знаем тем самым, какие молекулы можно считать динамическими моделями развития исследуемого явления.

Таков пролог информационной эволюции. Мы получаем определенное количество информационных «генотипов», хорошо предсказывающих развитие явления X. Одновременно проводится аналогичное «выращивание» частиц, моделирующих явления Y, Z... которые относятся ко всему исследуемому классу. Допустим, что мы получили наконец носители для всех семисот миллионов элементарных явлений этого класса. Теперь нам нужна «теория класса», которая состоит в определении его инвариантов, то есть параметров, общих для всего класса. Следовательно, надлежит отсеять все несущественные параметры.

Мы предпринимаем выращивание «следующего поколения» носителей, которые моделируют уже не развитие реального явления, а развитие первого поколения носителей. Поскольку явление содержит бесчисленное количество параметров, поддающихся выявлению, был проведен предварительный отбор существенных переменных. Их было очень много, но, конечно, это не могли быть все параметры. Предварительный отбор, как уже говорилось, проводится «классическим» методом, то есть его выполняют ученые.

На сей раз новое поколение носителей тоже не моделирует всех параметров развития первого поколения, но теперь селекция существенных переменных происходит сама собой (методом каталитического осаждения). Различные экземпляры носителей второго поколения игнорируют в ходе своего развития те или иные параметры первичных носителей. Некоторые из них игнорируют существенные параметры, в результате чего их динамические траектории отклоняются от «правильного предсказания». Такие экземпляры непрерывно исключаются благодаря «ситам». Наконец оказываются отобранными те носители второго поколения, которые, несмотря на игнорирование определенного количества параметров, «предсказали» всю траекторию развития первичных носителей. Если строение носителей, добравшихся «до цели» во втором круге, практически одинаково, это означает, что мы получили, то есть «выкристаллизовали», теорию исследуемого класса. Если все еще имеется (химическая, топологическая) разнородность носителей, нужно повторить отбор с целью дальнейшего исключения несущественных параметров.

«Кристаллизованные теории», или, если угодно, «теоретические организмы» второго захода, в свою очередь начинают «конкурировать» в способности к отображению с аналогичными частицами, которые образуют «теорию» иного класса. Таким образом, мы стремимся получить «теорию класса классов». Этот процесс можно продолжать сколь угодно долго с целью получить различные степени «теоретического обобщения». Хотя это и недостижимо, но можно представить себе некий «перл познания», некий «теоретический суперорганизм» на самой вершине этой эволюционной пирамиды, это «теория всего сущего». Она, конечно, невозможна; мы говорим о ней, чтобы сделать более наглядной аналогию с «перевернутым древом» эволюции.

Приведенная концепция, хотя и весьма утомительна в изложении, все же очень примитивна. Следует подумать о ее усовершенствовании. Стоило бы, например, применить на «ферме» нечто вроде «овеществленного ламаркизма». Известно, что теория Ламарка о наследовании приобретенных признаков не соответствует биологическим фактам. Но прием наследования «приобретенных признаков» можно было бы применить в информационной эволюции, чтобы ускорить «теоретические обобщения». Мы говорили, правда, о «кристаллизованной» информации, но с тем же успехом «теориеносные» молекулы могли бы быть иными (например, полимерными). Возможно также, что в некоторых аспектах их сходство с живыми организмами будет весьма значительным. Быть может, следовало бы начинать не с молекул, а с довольно больших конгломератов, либо даже с «псевдоорганизмов», или «фенотипов», представляющих собой информационную запись реального явления, и стремиться к тому, чтобы (опять-таки в противоположность обычным биологическим явлениям) такой «фенотип» породил свое «обобщение», свой «теоретический план», то есть «генотип-теорию». Впрочем, оставим эти замыслы, потому что все равно ни один из них нельзя проверить. Заметим лишь, что каждая «молекула-теория» является источником информации, обобщенной до закона, которому подчиняется система. Эту информацию можно перекодировать на доступный нам язык. Молекулы свободны от ограничений формальных математических систем — они могут смоделировать поведение трех, пяти или шести гравитируюших тел, что математически невыполнимо (по крайней мере строгим путем). Приведя в движение носителей «теории пяти тел», мы пользуемся данными о положении реальных тел. С этой целью нам придется «пустить их в ход» в соответствующей аппаратуре, так чтобы траектория их развития благодаря обратным связям подстроилась к траектории исследуемой системы. Разумеется, это предполагает существование механизмов авторегуляции и самоорганизации в самих носителях. Можно, пожалуй, сказать, что мы уподобляемся Ляо Си Мину, который обучал, как бороться с драконами, — единственная загвоздка состояла в том, что познавший его науку нигде не мог найти дракона. Мы тоже не знаем ни того, как создать «информационные носители», ни того, где найти материал для этой цели. Во всяком случае, мы показали, как можно представить себе отдаленное будущее «биотехнологии». Как видно из сказанного, у нее и в самом деле немалые возможности. Приободренные этим, представим в заключение еще одну биотехнологическую возможность.

Отдельным «классом в себе» были бы такие «информациеносные сперматозоиды», задание которых состояло бы не в изучении, а в продуцировании явлений или устройств. Из таких «сперматозоидов» или «яйцеклеток» могли бы возникать всевозможные нужные нам объекты (машины, организмы и т. п.). Разумеется, такой «рабочий сперматозоид» должен был бы располагать как закодированной информацией, так и исполнительными органами (наподобие биологического сперматозоида). Зародышевая клетка содержит информацию о том, какова конечная цель (организм) и каков путь к этой цели (эмбриогенез), но материалы для «построения плода» ей даны в готовом виде (в яйце). Однако мыслим еще и такой «рабочий сперматозоид», который обладает не только информацией о том, какой объект он должен соорудить и каким способом это надо сделать, но еще и о том, какие материалы окружающей среды (например, на другой планете) надлежит превратить в строительный материал. Такой «сперматозоид», если он обладает соответствующей программой, будучи высажен в песок, построит все, что можно создать из кремния. Возможно, ему придется «подбросить» некоторые иные материалы и, конечно, подключить к нему источник энергии (например, атомной). Но на этом кульминационном панбиотехнологическом аккорде самое время завершить разговор {XIII}.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Станислав Лем читать все книги автора по порядку

Станислав Лем - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Собрание сочинений в 10 томах. Том 13. Сумма технологии отзывы


Отзывы читателей о книге Собрание сочинений в 10 томах. Том 13. Сумма технологии, автор: Станислав Лем. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x