Коллектив авторов - Теорема Геделя о неполноте [Фейк]

Тут можно читать онлайн Коллектив авторов - Теорема Геделя о неполноте [Фейк] - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, год 1989. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Коллектив авторов - Теорема Геделя о неполноте [Фейк] краткое содержание

Теорема Геделя о неполноте [Фейк] - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Теорема Геделя о неполноте [Фейк] - читать онлайн бесплатно полную версию (весь текст целиком)

Теорема Геделя о неполноте [Фейк] - читать книгу онлайн бесплатно, автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако такой вопрос можно осмысленно задать лишь в отношении устройства, которое подчинено некоторому алгоритму, и который можно записать в виде текста и ввести в качестве "входа" в это же самое устройство. Если же устройство не подчинено какой-либо однозначно заданной совокупности предписаний, т.е. не является алгоритмическим устройством, то данный вопрос утрачивает всякий смысл. Но в таком случае исчезает и описанный выше парадокс. Таким образом, нет ничего парадоксального и противоречивого в предположении о возможности существовании устройства, применимого лишь к несамоприменимым алгоритмам, при условии, что само это устройство не является алгоритмическим.

Человек, конечно, не может решить такие алгоритмически неразрешимые проблемы, как проблема построения, сажем, "каталога всех и только всех несамоназывающихся каталогов" или построения прочих парадоксальных объектов. Однако, в других случаях, никакого противоречия в предположении о возможности решении любых единичных задач, составляющих алгоритмически неразрешимую массовую проблему, не существует (если эта возможность не сопряжена непременно с необходимостью указания алгоритма решения данной массовой проблемы).

Если мы допускаем возможность существования неформализуемых систем (систем, которые не допускают четкого и однозначного описания принципов своего функционирования посредством конечного набора правил), то мы должны, также, допустить и возможность существования устройств, способных решать алгоритмически неразрешимые проблемы, подобные проблеме "остановки".

3. Некоторые авторы утверждают, что для человека, также как и для машины, вполне можно сформулировать неразрешимые предложения, аналогичные геделевским предложениям (2).

Рассмотрим, к примеру, утверждение (обозначим его "утверждение 1*):

1* [Иванов не способен доказать данное утверждение 1*]

Спрашивается: может ли Иванов доказать данное утверждение? Если "да", то это утверждение истинно и, следовательно, Иванов не способен его доказать. Если же нет", то оно истинно, но недоказуемо (для Иванова).

Однако я, Иванов, вполне ясно вижу, что данное утверждение истинно - что непосредственно доказывается мною в предшествующем рассуждении. Иными словами, хотя формально данное предложение для меня является "недоказумым", тем не менее, фактически я способен "неформально" доказать его истинность - указав, например, что это предложение является геделевским предложением для системы "Иванов" и уже потому истинно. Каким же образом я способен сделать этот формально "запрещенный" для меня вывод? Очевидно, делая этот вывод, я как бы мысленно дистанцируюсь от самого себя, т.е. как бы создаю некое "виртуальное" "Я" или "виртуалього субъекта", не тождественного субъекту, фигурирующему в утверждении 1* под именем "Иванов". Это позволяет мне воспринять данную ситуацию извне, с позиции стороннего наблюдателя. Если для исходного "Я" (Иванова) предложение 1* формально неразрешимо, то для "виртуального Я" (Иванова') - оно оказывается вполне разрешимым.

Отсюда можно сделать важный вывод, что способность распознавать истинность геделевских предложений, если она действительно имеет место, связана с рефлексивной способностью субъекта - его способностью к самоосознанию. Действительно, осознание самого себя как единичной индивидуальности, выделенной из состава всеобщего бытия, т.е. осознание себя как "Я" - которому противопоставлено "не-Я",- такое осознание предполагает самодистанцирование субъекта, его способность "посмотреть" на себя извне, как бы "со стороны" - с некой надиндивидуальной точки зрения.

Рефлексивную способность можно понимать двояко:

1. Как способность субъекта описывать свой собственный внутренний мир - "субъективную реальность".

2. Как способность осознавать собственное "Я" - как нечто отдельное, отделенное от остального мира, противоположное "не-Я".

Первая способность предполагает вторую. Для того, чтобы описать свой собственный внутренний мир, необходимо предварительно опознать этот мир именно в качестве "моего внутреннего мира", противоположного "внешнему миру".

С философской точки зрения способность к самоосознанию указывает на принципиальную "разомкнутость" человеческого сознания, на непосредственную укорененность "Я" в некой надиндивидуальной реальности. Действительно, для того, чтобы понять, что я - это "Я", т.е. субъект, противоположный объекту, необходимо каким-то образом "увидеть" эти "Я" и "не-Я" в их непосредственном соотношении. Но для этого необходимо "выйти из себя", преодолеть замкнутость собственного сознания и "переместиться" в такую "онтологическую точку" в которой отсутствует различие "Я" и "не-Я" (субъекта и объекта) - и именно поэтому из этой "точки" возможно одновременно "созерцать "Я" и "не-Я" в их непосредственном отношении друг к другу. Поскольку такое "видение" может быть только умозрительным (сверхчувственным), то следует признать, что наше индивидуальное сознание должно быть каким-то образом "изнутри" (в своей мыслительной способности) соединено с Мировым целым - так что в некой особой сфере сознания утрачивается сохраняющееся в других сферах (например, в сфере чувственности) деление на субъект и объект.

"Незамкнутость" сознания, вместе с тем, можно истолковать как его неформализуемость. Действительно, благодаря незамкнутости, человеческий интеллект как бы "подключен" к бесконечному "резервуару аксиом", причем не просто внешним образом подключен к этому "резервуару", а так, что не существует отчетливой границы между "моим сознанием" и мировым надиндивидуальным целым. В силу этого невозможно сказать, что "Я" - это именно "вот это" конкретное содержание. Невозможно однозначным способом специфицировать "Я" - поскольку оно не имеет четких границ.

Машина всегда есть то, что она есть - она всегда есть нечто вполне определенное. Человек же не есть только то, что он есть. Он всегда больше того, чем он непосредственно является. Для человеческого интеллекта, когда мы его рассматриваем как целое, нарушается закон тождества А=А. Точнее, для человека одновременно верно и А=А и А >А. Иными словами, человеческий интеллект в своей основе "металогичен", не подчиняется законам классической логики.

Итак, "негеделевость" сознания (если она действительно имеет место) - его способность распознавать геделевские предложения - указывает, как нам представляется, на фундаментальные онтологические свойства сознания - его незамкнутость, укорененность в надиндивидуальном Мировом целом. "Негеделевость" сознания можно в этом случае объяснить тем, что человеческий интеллект - это система с неопределенным множеством аксиом. Такая система неформализуема, для нее невозможно однозначно определить множество "доказуемых истин" и, следовательно, для нее невозможно сформулировать предложения, утверждающие собственную недоказуемость относительно заданной системы аксиом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема Геделя о неполноте [Фейк] отзывы


Отзывы читателей о книге Теорема Геделя о неполноте [Фейк], автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x