Коллектив авторов - Теорема Геделя о неполноте [Фейк]

Тут можно читать онлайн Коллектив авторов - Теорема Геделя о неполноте [Фейк] - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, год 1989. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Коллектив авторов - Теорема Геделя о неполноте [Фейк] краткое содержание

Теорема Геделя о неполноте [Фейк] - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Теорема Геделя о неполноте [Фейк] - читать онлайн бесплатно полную версию (весь текст целиком)

Теорема Геделя о неполноте [Фейк] - читать книгу онлайн бесплатно, автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Это очень сильный вывод. Отсюда, в частности, следует, что функцию мозга невозможно полностью понять исходя из "классической" модели мозга как нейрональной сети, в которой единственными информационно значимыми событиями являются процессы обмена нервными импульсами между отдельными нервными клетками. Действительно, эти процессы - на уровне отдельных нервных клеток и небольших их совокупностей - достаточно хорошо известны. В них нет ничего загадочного для нас. Но в таком случае нет и никаких принципиальных препятствий для того, чтобы выяснить и функцию сколь угодно большой нейрональной сети и даже мозга как целого. Это лишь вопрос времени. Таким образом, с этой точки зрения функция мозга принципиально познаваема.

Геделевский аргумент по существу ставит под сомнение этот оптимистический для нейронаук вывод. Соответственно, возникает вопрос: как может быть устроен мозг, чтобы его функция могла рассматриваться как принципиально непознаваемая? Как вообще возможно существование физических систем, функцию которых в принципе невозможно выяснить анализируя их устройство?

Известные нам физические "законы природы" по существу представляют собой правила, с помощью которых мы можем, исходя из знания структурных свойств и состава физических объектов, предсказать их функциональные свойства. Таким образом, принципиально непознаваемыми могут быть лишь те функциональные свойства физических объектов, которые невыводимы однозначным образом из известных "законов природы" (которые, по сути, представляют собой предельно общие правила (алгоритмы), которым подчинено поведение самых различных физических систем).

Детальный анализ вопроса: как возможны физические системы, функция которых принципиально непознаваема - мы отложим до третьей главы. Пока лишь отметим, что рассмотренный в этом пункте довод против геделевского аргумента также оказался несостоятельным. Функция сознания не может быть подчинена "принципиально непознаваемому алгоритму", поскольку такой "алгоритм" вообще не является алгоритмом, его свойства противоречат самой природе алгоритмов, как потенциально эксплицируемых систем инструкций.

5. Неполнота формальных систем, вытекающая из теоремы Геделя, с необходимостью имеет место лишь при условии непротиворечивости рассматриваемой формальной системы. Непротиворечивость означает, что формальная система не допускает вывода противоположных утверждений: А и не-А. То есть система доказываемых теорем должна быть внутренне самосогласованной. Помимо самосогласованности естественно также потребовать то, что можно назвать "непогрешимостью" формальной системы: она должна доказывать лишь содержательно истинные высказывания, и не доказывать ни одного содержательно ложного высказывания. (Это условие представляется естественным в том случае, если рассматриваемая система претендует на роль формального аналога человеческого интеллекта или хотя бы формального аналога математических способностей человека. Действительно, если формальная система F действительно функционально тождественна человеческому интеллекту, то множество теорем, доказываемых в этой системе, будет полностью покрывать множество "содержательных" истин, так что отсутствует всякая возможность различить "формальные" и "содержательные" истины. Однако, как мы увидим ниже, и это, казалось бы неоспоримое условие "априорной" непогрешимости человеческого ума, - может быть подвергнуто сомнению).

Учитывая сказанное можно предположить, что человек способен "уйти" из под действия ограничений, вытекающих из теоремы Геделя, именно в силу того, что он является противоречивой формальной системой. Ясно, что это предположение снимает противоречивость гипотезы "алгоритмической вычислимости" функции сознания (и, в частности, снимает противоречивость гипотезы о возможности представить математические способности человека посредством некой формальной системы). Заметим, что гипотеза о "противоречивости" человеческого интеллекта является, пожалуй, самым популярным доводом против геделевского аргумента (см., например, (2, 4, 5, 7)). Д. Маккалох, например, утверждает, что геделевский аргумент доказывает не "...алгоритмическую невычислимость функции сознания, а доказывает лишь, что если эта функция вычислима, тогда человеческий интеллект либо противоречив, либо человек принципиально не способен познать алгоритм собственного сознания, а также доказать собственную непротиворечивость"(2).

Отметим, что данный довод против геделевского аргумента существенным образом отличен от всех рассмотренных нами доводов. Действительно, все рассмотренные выше контраргументы были направлены на то, чтобы показать, что человек в такой же мере подвержен действию ограничений, вытекающих из теоремы Геделя, как и машина. Данном же случае признается, что теорема Геделя не имеет силы в отношении человеческого интеллекта - хотя причина этого указывается достаточно тривиальная - внутренняя противоречивость (несамосогласованность) алгоритма, лежащего в основе человеческого мышления. С этой точки зрения нет принципиальной разницы между человеком и машиной. Машина также может избежать "неполноты", вытекающей из теоремы Геделя. Для того, чтобы машина "сравнялась" с человеком достаточно (помимо достижения определенной вычислительной мощности и объема памяти и создания адекватного программного обеспечения) лишь сделать машину способной противоречить самой себе - т.е. высказывать несовместимые друг с другом утверждения, принимать в качестве истинных противоречащие друг другу формулы и т.п.

Подчеркнем, что противоречивость не устраняет возможности описания "мыслящей противоречиво" системы, как системы, подчиненной определенному алгоритму (набору четко и однозначно сформулированных правил). Просто правила, составляющие алгоритм, оказываются логически несовместимыми и в результате система оказывается способной оценивать одни и те же предложения как истинные и как ложные в разные моменты времени.

Формально данная гипотеза действительно позволяет снять противоречивость предположения о возможности представить человеческий ум в виде некоего алгоритма. Однако эта гипотеза влечет весьма радикальные следствия касающиеся, в частности, природы математического мышления и понимания сущности математики.

Что означает для формальной дедуктивной системы противоречивость? То, что из аксиом данной системы при помощи разрешенных правил вывода можно получить некоторое утверждение, а также можно вывести и его отрицание. То есть такая система утрачивает способность однозначно различать истину и ложь.

Согласно правилам логики, что если формальная система противоречива, то в ней может быть доказано любое предложение. Действительно, если система противоречива, то в ней неизбежно в состав теорем включаются ложные формулы. В частности, в ней выводима заведомо ложная формула (А и не-А), которую далее можно использовать в качестве посылки. Опираясь же на ложные посылки можно доказать все, что угодно. Таким образом, если дедуктика противоречива, то в ней доказуема любая формула заданного формального языка.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема Геделя о неполноте [Фейк] отзывы


Отзывы читателей о книге Теорема Геделя о неполноте [Фейк], автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x