Коллектив авторов - Теорема Геделя о неполноте [Фейк]
- Название:Теорема Геделя о неполноте [Фейк]
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1989
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Теорема Геделя о неполноте [Фейк] краткое содержание
Теорема Геделя о неполноте [Фейк] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вывод: рассмотренный довод против геделевского аргумента, видимо, несостоятелен. Человек фактически способен распознавать истинность геделевских предложений в которых он сам фигурирует как субъект высказывания. Эту способность можно "метафизически" объяснить "незамкнутостью" человеческого сознания, его непосредственной укорененности в надиндивидуальном мировом целом.
Подчеркнем, что в данном случае мы не предрешаем вопрос об истинности геделевского аргумента. Речь идет лишь о том, как возможно объяснить "негеделевость" человеческого интеллекта если она действительно имеет место - объяснить именно как особую форму "превосходства" человека над машиной. Мы также не настаиваем, что данное объяснение "негеделевости" является единственно возможным.
4. Еще одно возражение против геделевского аргумента заключается в следующем. Полагают, что человек, также как и машина, подпадает под ограничения, вытекающие из теоремы Геделя, но мы не способны в явной форме построить сами для себя геделевские предложения, поскольку не способны установить алгоритм (аксиоматику), на основе которого функционирует наш интеллект (3, 4, 5, 6). Назовем это утверждение "гипотезой о скрытой алгоритмичности" человеческого интеллекта.
Здесь можно рассуждать следующим образом: предположим, что в основе человеческого интеллекта лежит некий алгоритм (система правил) А. Если мы способны в явной форме установить какие именно правила составляют А, т.е. каким конкретно правилам подчинен наш собственный ум, то мы способны также построить "неразрешимое" высказывание:
2* [Алгоритм А не способен установить истинность высказывания 2*].
Это предложение истинно, но недоказумо. Но человек, если он действительно подчинен алгоритму А, не способен установить истинность данного предложения. Однако, если человек способен установить, что он действительно подчинен алгоритму А, то уже в силу этого он сразу же устанавливает истинность - 2* расценивая его как геделевское предложение. Таким образом, предложение 2*одновременно и должно и не может быть распознано человеком как истинное. Чтобы исключить возможность возникновения такого парадокса, необходимо, видимо, предположить принципиальную непознаваемость алгоритма, в соответствие с котором функционирует наш собственный мозг. (Сравним этот аргумент с предшествующим. Разница между ними в том, что во втором случае делается акцент на необходимости детального знания "системы аксиом" (алгоритма) на которой основана психическая деятельность человека, для того, чтобы было возможно сформулировать геделевские предложения, неразрешимые для человеческого мышления. Действительно, конкретный вид геделевских предложений очевидно зависит от выбора дедуктики, т.е. конкретного набора аксиом и правил вывода. Поэтому, не зная действительного устройства формальной системы, невозможно и выписать в явном виде и геделевское предложение для данной системы. С этой точки зрения предложение 1* [Иванов не способен доказать утверждение 1*] не является подлинным геделевским предложение, поскольку оно никак не специфицирует систему "Иванов" и, следовательно, утверждает непонятно о чем. Следовательно, снимается и вопрос о том, каким образом Иванов способен распознать истинность данного предложения).
"Непостижимость" правил, которым подчинено наше мышление и поведение в целом можно обосновать и более простым способом. Предположим, что я выяснил алгоритм А, который исчерпывающим образом описывает функцию моей собственной психики (или функцию моего мозга). Тогда, по крайней мере в некоторых случаях, я буду способен предсказывать свои будущие действия, поступки. Предположим, что исследование алгоритма А привело меня к заключению, что я в ситуации Х должен с необходимостью осуществить действие Р. Но тогда, что, спрашивается, может помешать мне именно в силу осознания неизбежности действия Р "назло" или "нарочно" отказаться от осуществления Р, и осуществить какое-то альтернативное действие. Тогда получится, что я одновременно должен и не должен осуществить действие Р.
Итак, можно утверждать, что если сознание подчинено некоторому конкретному алгоритму, то предположение о познаваемости данного алгоритма ведет к противоречию. Отсюда можно предположить, что данный алгоритм, если он на самом деле существует, принципиально непознаваем. Однако можно ли его в таком случае считать алгоритмом?
Алгоритм - это ясная, четкая, понятная для всех система инструкций, совокупность правил. Следовательно, в само понятие алгоритма уже изначально входит идея его принципиальной познаваемости. То, что принципиально непознаваемо - не может рассматриваться в качестве алгоритма.
Таким образом утверждение о принципиальной непознаваемости алгоритма А - фактически равносильно признанию невозможности описать функцию сознания с помощью какого-либо алгоритма.
Здесь мы, по сути, получаем дополнительный довод в пользу геделевского аргумента - мы видим, что гипотеза об алгоритмической природе сознания ведет к парадоксам, логически противоречива.
Следует подчеркнуть, с другой стороны, что гипотеза об алгоритмической невычислимости функции сознания недоказуема эмпирически. Невозможно на практике показать, что человек на самом деле способен решать алгоритмически неразрешимые массовые проблемы. Это невозможно просто потому, что человек на протяжении своей жизни имеет дело лишь с конечным множеством проблем - которое, конечно, может представлять собой подмножество множества, составляющего алгоритмически неразрешимую массовую проблему. Человек может продемонстрировать свою способность решать любые предъявляемые ему конкретные задачи, входящие в состав данной алгоритмически неразрешимой массовой проблемы. Однако отсюда не следует, что человек способен решать любые проблемы, имеющие отношение к данному (бесконечному) классу проблем. Алгоритмическая неразрешимость не исключает возможности решения любого конечного множества проблем, относящихся к неразрешимой массовой проблеме. Утверждается лишь отсутствие общего, универсального способа решения таких проблем.
Однако хотя гипотеза алгоритмической невычислимости функции сознания и недоказуема, но она, тем не менее, вполне опровержима. Функцию, которую выполняет та или иная система, можно установить двумя различными способами: либо наблюдая как данная система реагирует на те или иные "входные" сигналы, либо выяснив как данная система "устроена" - т.е. выяснив ее конструкцию и, таким образом, выяснив алгоритм, на основе которого функционирует данная система.
В принципе, анализируя строение мозга и функцию отдельных его элементов, можно выяснить алгоритм, которому подчинена наша психическая деятельность. Однако, если мы принимаем геделевский аргумент, то мы должны исключить такую возможность - поскольку она влечет противоречие. Таким образом, единственный практически значимый вывод, который следует из принятия геделевского аргумента, - это вывод о принципиальной невозможности выяснить те принципы, которым подчинена работа нашего мозга.
Читать дальшеИнтервал:
Закладка: