Коллектив авторов - Теорема Геделя о неполноте [Фейк]
- Название:Теорема Геделя о неполноте [Фейк]
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1989
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Теорема Геделя о неполноте [Фейк] краткое содержание
Теорема Геделя о неполноте [Фейк] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Если в основе математических способностей человека лежит противоречивая формальная дедуктивная система, то это означает, что любая математическая теорема рано или поздно будет опровергнута. Но в таком случае следует признать, что доказательность в математике, т.е. наличие в ней всеобщих и необходимых истин - не более чем психологическая иллюзия. Математика, таким образом, лишается статуса доказательной науки и ставится в один ряд с науками "эмпирическими".
Но в таком случае возникает вопрос: каким же образом у нас возникает иллюзия доказательности математики? Почему мы сплошь и рядом не сталкиваемся с противоречиями в математических теориях или, по крайней мере, с существенными разногласиями в среде математиков по поводу любой математической теоремы? Почему доказательства, как правило, без особых возражений и длительных дискуссий принимаются математическим сообществом, а также, почему существуют математические результаты, полученные более двух тысяч лет назад и сохранившие свой статус истинных по сей день? (Например, "Начала" Эвклида).
Известен, например, такой факт: ни одна математическая теорема не была опровергнута позже 50 лет после того, как она была доказана (8).
Как можно объяснить все эти факты, указывающие на весьма надежный, достоверный характер математических результатов, с позиций гипотезы, утверждающей внутреннюю противоречивость человеческого интеллекта - включая сюда и способности, ответственные за математическое мышление?
Самое простейшее объяснение этих фактов заключается в предположении, что "контрдоказательства" (т.е. опровержения) известных "надежных" математических теорем просто намного превосходят по своей сложности (длиннее) "доказательства" и именно поэтому "контрдоказательства" пока нам не известны. Это объяснение представляется весьма фантастическим, однако сбрасывать его совсем со счета также не следует.
Другое, гораздо более реалистическое объяснение заключается в предположении, что подлинный источник истинности в математике - это отнюдь не самоочевидный (и потому априорный) характер аксиом, лежащих в основе той или иной дедуктивной математической теории, а практика (точнее, применение математических теорий на практике). Сторонники этой точки зрения полагают, что математическое сообщество сознательно или бессознательно систематически "отбраковывает" как негодные те схемы рассуждений и математические результаты, которые приводят нас к выводам, противоречащим практике. (Например, теорема арифметики, утверждающая 2+2=4, с этой точки зрения, истинна не в силу какой-то особой способности нашего разума непосредственно (интуитивно) усматривать равенство 2+2 и 4, а является истинной в силу того, что любое рассуждение, которое приводило бы нас к иному результату, противоречило бы практике и поэтому неизбежно было бы отвергнуто как ошибочное).
Все это означает, что методология математики ничем принципиально не отличается от методологии любой другой естественной науки (например, физики). Ее "доказательства" - это просто психологически убедительные способы аргументации, не гарантирующие получение абсолютной истины, а отнюдь не способы получения каких-то "всеобщих и необходимых" (а также "общезначимых") истин.
Для того, чтобы убедиться в истинности математических утверждений, с этой точки зрения необходимо сопоставить "доказанный" результат с опытом. Математика, таким образом, вопреки классическим представлениям о ее природе, не имеет "внутреннего" (независимого от практики) критерия истинности.
Из всего этого следует, что если мы отрываем математику от практической почвы - то следует ожидать появления противоречий. В подтверждение этой точки зрения нередко ссылаются на парадоксы, которые в конце 19 - начале 20 столетия были обнаружены в теории бесконечных множеств Г. Кантора - одной из наиболее абстрактных, оторванных от практики математических теорий, с которой связывались большие надежды в плане окончательного обоснования всей "классической" математики.
Уже сам Кантор обнаружил внутреннюю противоречивость понятия "множества всех множеств" (которое совершенно естественно возникало в первоначальной "наивной" версии теории множеств как следствие неограниченного применения принципа "свертки" - условием "свертывания" каких-либо предметов в множество у Кантора являлась простая мыслимость элементов данного множества в качестве единого целого). Позже были открыты и другие парадоксы "наивной" теории множеств (Парадокс Рассела, парадокс Бурали-Форти и др.). Так, например, Б. Рассел показал, что вполне приемлемые с точки зрения теории множеств рассуждения приводят к построению таких парадоксальных объектов, как "множество всех множеств, не содержащих себя в качестве элемента" - это множество одновременно и должно и не должно содержать себя в качестве элемента.
Доказывает ли наличие парадоксов в теории множеств неустранимую противоречивость математического мышления? На этот вопрос, как нам представляется, следует ответить отрицательно.
Во-первых, следует признать, что обнаружение упомянутых противоречий, хотя и вызвало первоначально панику в математическом сообществе, все же не привело к краху классической математики в целом. Ни один из классических разделов математики (арифметика, геометрия, матанализ и др. ) не пострадал. В целом преобладает мнение, что указанные парадоксы являются следствием достаточно тонких, ранее не замечаемых, дефектов мышления, которые вполне устранимы. Например, по мнению Рассела и Пуанкаре парадоксы возникают из-за нарушения принципа "порочного круга", т.е. нарушения правила: "Все, что включает все члены совокупности, не должно быть одним из членов совокупности". Определения, в которых это правило нарушается, называется "непредикативным". Исключая непредикативные определения, мы тем самым исключаем возможность включения в теорию таких парадоксальных объектов, как "множество всех множеств, не содержащих себя в качестве элемента" или "множество всех множеств". Разработанная Расселом "теория типов" позволяет различать математические конструкции по уровню абстрактности и не допускать смешение этих уровней - что и является, по его мнению, причиной возникновения парадоксов.
По существу сходный способ устранения парадоксов используется и в аксиоматической теории множеств Цермело-Френкеля. Здесь исключение понятий типа "множество всех множеств" достигается путем индуктивного способа построения новых множеств - всякое множество строится на основе уже ранее построенных (или постулированных) множеств с использованием конечного набора разрешенных операций.
Читать дальшеИнтервал:
Закладка: