Коллектив авторов - Теорема Геделя о неполноте [Фейк]

Тут можно читать онлайн Коллектив авторов - Теорема Геделя о неполноте [Фейк] - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, год 1989. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Коллектив авторов - Теорема Геделя о неполноте [Фейк] краткое содержание

Теорема Геделя о неполноте [Фейк] - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Теорема Геделя о неполноте [Фейк] - читать онлайн бесплатно полную версию (весь текст целиком)

Теорема Геделя о неполноте [Фейк] - читать книгу онлайн бесплатно, автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вместе с тем, нужно отметить, что ни аксиоматическое построение теории множеств, ни теория "типов" не позволяю сами по себе гарантировать непротиворечивость математических построений. Исключая известные парадоксы, мы не можем быть уверены, что подобные парадоксы не возникнут в будущем. К. Гедель доказал теорему, согласно которой истинность в рамках той или иной формальной системы не может быть доказана с использованием только тех средств, которые формализованы в рамках данной системы. Отсюда следует, что истинность математики в целом не может быть доказана средствами самой математики. Не означает ли это, что математика не имеет "внутреннего" критерия истинности и неизбежно должна апеллировать к опыту?

Как нам представляется, это совсем не обязательно. Неспособность математики к самообоснованию не является чем-то удивительным. Математика мыслимая как целое - это ни что иное, как сфера "чистого мышления", т.е. мышления, "не замутненного" какими-либо внерациональными (волевыми, эмоциональными, чувственными) элементами. Ясно, что сам характер процедуры обоснования (отсылка к основанию) не допускает самообоснования. В готовых формах мышления истина лишь транслируется, но не рождается. Однако, это не означает, что истина рождается непременно лишь в чувственном опыте. Можно допустить также и существование некой "непроницаемой" для разума (металогической) внечувственной сферы, которая является внутренним (в смысле, "внеэмпирическим", внечувственным) основанием самого разума. Это и есть то, что обычно называют "интеллектуальной интуицией" - способность непосредственно "усматривать" истинность без каких-либо обоснований или доказательств. Фактическая "прочность" математических теорий, весьма оторванных от практики, указывает на то, что такого рода "интеллектуальная интуиция" действительно существует и является подлинным источником истинности нашего мышления.

Рассмотрим вкратце причины возникновения парадоксов в математике и человеческом мышлении в целом. Парадоксальные объекты - это, по существу, невозможные объекты, т.е такие объекты, которым приписываются несовместимые друг с другом предикаты (например: круглый квадрат, горячее мороженое и т.п.). Возникает вопрос: как вообще можно мыслить то, что не может существовать?

Наше мышление - предметно. Каждое осмысленное понятие указывает на некий возможный или действительный объект, группу объектов, на свойства или отношения между объектами (причем в качестве "объектов" могут выступать не только чувственно воспринимаемые предметы, но и нечто сверхчувственное, например, смысл, желание, оценка, "Я", душа и т.п.). Каким же образом возможна мысль предмет которой - нечто невозможное?

Эта проблема обычно решается в философии путем различения предметного, содержательного мышления и мышления символического. В первом случае акт мышления - есть акт схватывания "идеи" объекта - предмета мысли во всей полноте его свойств и отношений. Во втором же случае мы мы мыслим с помощью "отвлеченных понятий", которые лишь указывают "направление" к идее, но не позволяют реально обладать ее конкретным содержанием (9).

Иными словами, содержательная мысль - это мысль, включающая в себя адекватное самому предмету "интеллектуальное созерцание" данного предмета, т.е. мысль полно, исчерпывающе воспроизводящая структурные, реляционные и прочие свойства предмета мышления. Именно таковым, по существу, и является (вернее, должно всегда являться) математическое мышление.

Символическое мышление, в отличие от содержательного, не воспроизводит "идеально" предмет мышления, но задает лишь отдельные признаки, с помощью которых можно практически распознавать замысленный объект. Последнее, однако, не гарантирует, что объект, обладающий указанными признаками, действительно существует (вернее, может существовать - поскольку мышление имеет дело с возможным и невозможным, а не с возможным и действительным). Указываемый признаками класс может оказаться пустым в силу несовместимости указанных признаков.

Таким образом, символическое мышление - это мышление, которое как бы "остановилось на середине дороги", это не законченное мышление. По сути, это лишь как бы "замысел" содержательной мысли, некая программа синтеза "идеи", адекватной предмету мысли, причем эта программа может быть выполнимой или невыполнимой. В последнем случае мы и имеем дело с парадоксальными, невозможными объектами, - которые, по существу, нами не мыслятся, но лишь замысливаются, лишь мнятся, но не осуществляются в мышлении.

В математике различие между содержательным и символическим мышлением можно представить как различие между конструктивным и неконструктивным мышлением. Обычно полагают, что математическое мышление конструктивно, если мыслимый объект задается через посредство указания процедуры (алгоритма) его построения. Неконструктивное задание математического объекта осуществляется через посредство задания условий (признаков), которым данный объект должен удовлетворять. Ясно, что если ограничиться только конструктивными определениями, никакие парадоксы возникнуть не могут.

Алгоритм, однако, это некая финитная процедура. Идея алгоритма предполагает возможность передачи процесса порождения объекта машине. Машина, очевидно, не может осуществить бесконечное множество шагов для того, чтобы выдать некий окончательный результат. Таким образом, конструктивизм в математике равносилен запрету на использование актуальной бесконечности. (По мнению сторонников конструктивистского и интуитивистского направлений в математики парадоксы связаны именно с использованием в математике идеи актуальной бесконечности или, по крайней мере, связаны с некритическим применением к бесконечным множествам классической логики, применимой в полном объеме лишь к конечным множествам).

Запрет на использование актуальной бесконечности можно истолковать в пользу "эмпирического" статуса истинности в математике. Действительно, отказ от актуальной бесконечности делает математические конструкции вполне обозримыми и, значит, потенциально эмпирически проверяемыми. В этой потенциальной проверяемости и можно усмотреть причину надежности конструктивных доказательств. Поэтому если мы хотим сохранить идею чисто "внутреннего", внеэмпирического источника истинности в математике, то мы должны настаивать на надежности также и доказательств, использующих понятие актуальной бесконечности.

На неустранимость из математического мышления актуальной бесконечности непосредственно указывает сама теорема Геделя о неполноте формальных систем. Действительно, смысл теоремы как раз и заключается в том, что Гедель (используя лишь финитные средства) доказал, что содержательная математическая истина не может быть выражена с помощью каких-либо финитных методов рассуждения. Т.е. математика не может быть целиком сведена к каким-либо конечным формальным построениям. Как отмечает Л.Г. Антипенко: "...теоремы Геделя о неполноте превращают высказывания о существовании актуальной бесконечности в математическую истину того же рода, как 2+2=4 "(10 с.130). Следовательно, "бесконечное" не является псевдопонятием, есть необходимая часть математики. Но в таком случае, ошибочна идея чисто эмпирического статуса математической истинности (т.к. "бесконечное" , о котором мы можем доказательно рассуждать, не является понятием, которое можно извлечь из опыта).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема Геделя о неполноте [Фейк] отзывы


Отзывы читателей о книге Теорема Геделя о неполноте [Фейк], автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x