Коллектив авторов - Теорема Геделя о неполноте [Фейк]
- Название:Теорема Геделя о неполноте [Фейк]
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1989
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Теорема Геделя о неполноте [Фейк] краткое содержание
Теорема Геделя о неполноте [Фейк] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Как же в таком случае следует относиться к существующим и возможным парадоксам теории (актуально) бесконечных множеств? Как нам представляется, эти парадоксы не обязательно указывают на какие-то неустранимые пороки нашего мышления. Внутренняя противоречивость, например, "множества всех множеств" проистекает, как представляется, из его особого статуса, отличного от статуса обычного бесконечного множества. Поскольку это множество изначально содержит в себе все, что только можно помыслить, оно непополнимо, следовательно, его невозможно увеличить прибавив к нему множество всех его подмножеств (как это происходит в случае обычных бесконечных множеств). Но и обычное бесконечное множество нельзя пополнить прибавив к нему любое конечное или бесконечное множество имеющее ту же самую мощность, что и исходное множество. Это свойство также выглядит парадоксальным с точки зрения свойств конечных множеств. Т.е. свойства "множества всех множеств" радикальным образом отличны от свойств "обычных" бесконечных множеств и это отличие примерно такого же рода, как отличие между бесконечными и конечными множествами. Вопросы, которые порождают парадоксы, применительно к таким особым множествам просто неуместны. Нельзя приписывать "множеству всех множеств" какие-либо конкретные кардинальные или ординальные числа, поскольку оно изначально содержит в себе все возможные кардиналы и ординалы. Мера этого множества бесконечна и потому неопределима. Точно так же нельзя спрашивать о том, к какому классу (обычных или необычных множеств) относится "множество всех множеств, не включающих себя в качестве элемента"- поскольку это множество уже за рамками такого рода противопоставлений. Но именно это, как нам представляется, и утверждает "терия типов" Б. Рассела.
Суть этой теории видится в том, что переход к более высокому типу абстракций качественно изменяет характер рассматриваемых математических конструкций и, таким образом, на них уже невозможно распространить свойства или отношения, характерные для математических конструкций низшего уровня абстракции. Опираясь на эту теорию, следовательно, можно устранять парадоксы, не отказываясь от понятия актуальной бесконечности и, таким образом, не подвергая сомнению существование внутренних критериев истинности в математике. (Вместе с тем, как отмечал К. Гедель, "теория типов" является "слишком радикальным" средством устранения парадоксов, поскольку использование рефлексивных понятий в математике далеко не всегда влечет возникновение парадоксов. Для нас, однако, важно лишь то, что парадоксы можно устранить без разрушения большей части классической математики и не отказываясь от представления об актуальной бесконечности).
Таким образом, накладывая определенные ограничения на возможные способы математических рассуждений можно, видимо, избежать угрозы возникновения противоречий в математике. Это говорит о том, что противоречия в математике не носят фатальный характер, не являются следствием неустранимой противоречивости человеческого мышления. Человек может противоречить сам себе когда он мыслит "неправильно" (недостаточно конструктивно, не продумывая определения до конца, не выводя всех необходимых следствий из заданных постулатов, не учитывая различия в уровне абстракции математических объектов и т.п.). И эта "неправильность" мышления представляется вполне устранимой.
Иногда сторонники идеи противоречивости человеческого мышления ссылаются на достаточно очевидный факт способности человека ошибаться. В силу этого полагают, что даже в сфере математического мышления нельзя рассчитывать на полную строгость и отсутствие противоречий. При этом ссылаются на широко известные случаи ошибочных доказательств, авторство которых принадлежит, нередко, выдающимся математикам.
Проблема здесь в том, насколько фатальны эти ошибки, способно ли математическое сообщество своевременно их замечать и исправлять. На этот последний вопрос, видимо, следует ответить положительно. История математики показывает, что хотя отдельные, даже великие, математики время от времени ошибаются, математическое сообщество в целом достаточно быстро находит и исправляет ошибки (как правило, это происходит еще при жизни автора ошибочной теоремы) (8).
Это говорит о том, что ошибки математиков - это не следствие неустранимой внутренней противоречивости человеческого мышления, а скорее есть следствие влияния на мышление каких-то внешних факторов, искажающих правильный ход мыслительных процессов (в этом смысле ошибки человека аналогичны ошибкам, которые время от времени допускает компьютер, даже в том случае, если он работает на основе "идеальной", безошибочно составленной и непротиворечивой программе).
Итак, хотя, видимо, предположение о внутренне противоречивом характере человеческого мышления невозможно строго опровергнуть, но вряд ли это предположение можно считать правдоподобным, а аргументы в его пользу - убедительными.
Предположим, однако, что мышление человека действительно страдает неустранимой противоречивостью. Что это предположение может конкретно дать нам в плане анализа геделевского аргумента?
Если человеческое мышление подчинено внутренне противоречивой системе правил, то, очевидно, к человеку неприложимы ограничения, следующие из теоремы Геделя о неполноте формальных систем - просто потому, что теорема имеет в виду только непротиворечивые формальные системы. Однако, противоречивость, очевидно, не дает человеку каких-либо преимуществ перед машиной, функционирование которой подчинено непротиворечивой системе правил. Человек, конечно, в этом случае может констатировать истинность любых геделевских предложений, но это возможно лишь в силу отсутствия внутреннего критерия, позволяющего однозначно различать истину и ложь. Следовательно, такого рода констатации будут иметь лишь относительный характер, поскольку не исключается, что в будущем те же предложения будут отнесены к разряду ложных.
Гораздо большее значение имеет тот факт, что сомнение в непротиворечивом характере человеческого мышления ставит под сомнение достоверность любых математических результатов, в том числе и теоремы Геделя о неполноте формальных систем. Но если мы ставим под сомнение истинность теоремы Геделя, то это ставит, также, и под сомнение сами основания различения человеческого и машинного интеллекта, которые предполагаются исходя из данной теоремы.
6. Д. Чалмерс (3) полагает, что геделевский аргумент можно нейтрализовать более слабым предположением, чем гипотеза о противоречивом характере алгоритма, представляющего интеллектуальные способности человека. Достаточно лишь предположить, что человек не способен установить непротиворечивость собственного мышления, в частности, не способен установить, что все утверждения, в истинность которых он верит, на самом деле являются истинными.
Читать дальшеИнтервал:
Закладка: