Коллектив авторов - Теорема Геделя о неполноте [Фейк]

Тут можно читать онлайн Коллектив авторов - Теорема Геделя о неполноте [Фейк] - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, год 1989. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Коллектив авторов - Теорема Геделя о неполноте [Фейк] краткое содержание

Теорема Геделя о неполноте [Фейк] - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Теорема Геделя о неполноте [Фейк] - читать онлайн бесплатно полную версию (весь текст целиком)

Теорема Геделя о неполноте [Фейк] - читать книгу онлайн бесплатно, автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

С этой точки зрения любой алгоритм - есть разновидность аксиоматической системы. "Логические прыжки", о которых говорит Джордж, - следует, видимо, понимать как включение в дедуктивную систему правил, противоречащих законам логики. Но такая система неизбежно внутренне противоречива (по крайней мере, если нарушается закон тождества или закон противоречия) и т.о. вступают в действия возражения, сформулированные нами в пункте 6.

Несколько сложнее обстоит дело в том случае, когда неприменимость теоремы Геделя связывается с наличием элемента случайности. Всякая подлинно случайная последовательность, очевидно, алгоритмически невычислима. По существу, невозможность алгоритмической имитации процесса порождения данной последовательности - и есть подлинный критерий ее случайности. Система, которая содержит в себе элемент подлинной случайности, также может рассматриваться как неформализуемая - поскольку невозможно ее полное и исчерпывающее описание с помощью какого-либо конечного набора правил. Следовательно, действительно к такой системе теорема Геделя неприменима.

Таким образом, можно предположить, что, как человек, так и "мыслящий" компьютер, одинаково способны избежать ограничений, которые вытекают из теоремы Геделя о неполноте формальных систем, при условии, что они содержат в себе некий "генератор случайности" - функциональный элемент, деятельность которого не может быть описана с помощью конечного набора правил, не может быть воспроизведена посредством какого-либо алгоритма - именно в силу случайного характера его функционирования.

С этой точки зрения между человеком и машиной нет какой-либо принципиальной разницы. Вместе с тем, нужно отметить, что включение в вычислительный процесс элемента случайности - (например, в форме случайного выбора следующего вычислительного шага из набора "разрешенных" программой шагов) - хотя и может в некоторых случаях ускорить процесс вычислений (установлено, что вероятностные машины Тьюринга имеют некоторые преимущества в "скорости" перед детерминированными машинами Тьюринга, т.е. способны решать поисковые задачи за меньшее в среднем число шагов), но, тем не менее, это не позволяет хотя бы минимальным образом расширить круг принципиально разрешимых проблем. То, что принципиально неразрешимо для детерминированной машины - остается неразрешимым и для вероятностной.

Заметим, что если ограничиться рассмотрением только математических способностей человека (а только эта часть интеллекта человека имеет отношение к теореме Геделя), то аргумент, основанный на гипотезе наличия "вероятностного" элемента в составе человеческой психики, теряет всякий смысл. Действительно, в своем повседневном поведении человек часто действует спонтанно, случайным образом осуществляя выбор между заданными альтернативами. Однако этого нельзя сказать о математическом мышлении. Математик, который принимает или не принимает доказательство теоремы методом "бросания монеты", представлялся бы нам психически нездоровым. Доказательность математических рассуждений предполагает строгую логическую детерминированность каждого последующего шага. Элемент случайности допускается лишь в процессе поиска решения той или иной математической проблемы. Здесь, как уже отмечалось, случайность может играть конструктивную роль несколько ускоряя поиск решения. Однако принципиальной разницы между детерминированным и недетерминированным поиском не существует. Задачи неразрешимые эффективно с помощью детерминированного поиска, не могут также быть эффективно решены посредством случайных блужданий.

Можно, также, предположить, что случайность может играть позитивную роль и в процессах выдвижения новых математических гипотез. Однако чисто случайное угадывание правильной нетривиальной математической теоремы представляется чем-то весьма маловероятным, граничащим с чудом. Это возможно, видимо, лишь в том случае, если имеется крайне мощный механизм проверки (селекции) подобного рода гипотез. Однако и в этом случае значение элемента случайности можно, видимо, свести к нулю задав определенный, чисто детерминированный порядок порождения такого рода гипотез (при условии, что выбор гипотез осуществляется из некоторой заранее заданной совокупности "всех возможных теорем" данного математического языка или исчисления).

Отметим, что для дедуктивной системы будет невозможно заранее сформулировать геделевские предложения, если система аксиом и правил вывода будет постоянно изменяться случайным образом, т.е. если в эту систему будут непрерывно вноситься заранее непредсказуемые, никакими правилами не ограниченные изменения.

Однако в каждый конкретный момент времени для такой системы будут существовать вполне определенные неразрешимые предложения геделевского типа. Таким образом, система с "флуктуирующим" составом аксиом не будет обладать той универсальной способностью к распознаванию геделевских предложений, которую мы приписываем человеческому интеллекту.

Такой способностью могла бы обладать лишь система с бесконечным числом аксиом, при условии, что в это число входили бы все потенциально возможные геделевские предложения и, следовательно, все возможные пополнения ее аксиоматики. Иными словами, множество аксиом данной системы должно совпадать с универсумом математических рассуждений (Канторовским "Абсолютом" - множеством всех множеств). Ни одна реальная "машинная" система не способна обладать "бесконечной" аксиоматикой (т.к. не возможна бесконечная по числу символов программа, описывающая алгоритм данной системы). Поэтому любая "машинная" система принципиально не полна (пополнима).

Однако, человеческий интеллект, видимо, вполне способен потенциально содержать в себе "универсум математических рассуждений" - поскольку это и есть универсум всех возможных "человеческих" математических рассуждений (если только не считать этот универсум неким "псевдопонятием", не имеющим никакого позитивного содержания).

Итак, введя в систему искусственного интеллекта элемент случайности мы можем сделать ее "неформальной" и, таким образом, вывести за пределы действия теоремы Геделя о неполноте формальных систем. Однако это, видимо, не может иметь никакого отношения к математическим способностям искусственного или естественного интеллекта и не позволит системе, содержащей в себе элемент случайности, решать алгоритмически неразрешимые проблемы и, в частности, распознавать истинность любых геделевских предложений (хотя такая система в некотором смысле будет "алгоритмически невоспроизводимой", поскольку невозможно будет предсказывать каким-либо регулярным, правилосообразным способом, что она сделает в следующий момент времени).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема Геделя о неполноте [Фейк] отзывы


Отзывы читателей о книге Теорема Геделя о неполноте [Фейк], автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x