Коллектив авторов - Теорема Геделя о неполноте [Фейк]

Тут можно читать онлайн Коллектив авторов - Теорема Геделя о неполноте [Фейк] - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, год 1989. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Коллектив авторов - Теорема Геделя о неполноте [Фейк] краткое содержание

Теорема Геделя о неполноте [Фейк] - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Теорема Геделя о неполноте [Фейк] - читать онлайн бесплатно полную версию (весь текст целиком)

Теорема Геделя о неполноте [Фейк] - читать книгу онлайн бесплатно, автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

9. Наиболее значительный довод против геделевского аргумента заключается, с нашей точки зрения, в том, что человек - это конечное существо и поэтому к нему неприменимо понятие алгоритмической невычислимости (см. также аналогичную аргументацию в (6) ). Действительно, алгоритмически невычислимыми (с точки зрения теории алгоритмов) могут быть лишь такие функции, область определения которых - бесконечное множество. Любая функция, область определения которой конечно, алгоритмически вычислима.

Если количество различных вариантов отображения одного множество в другое конечно, то все эти варианты можно, в принципе, перечислить. Один из этих вариантов, по существу, и будет представлять собой "алгоритм" вычисления интересующей нас функции (записанный в виде "функциональной таблицы", сопоставляющей каждому возможному "входу" соответствующий ему "выход"). Человек - это система с конечным числом возможных "входов" и "выходов". "Входы" в данном случае - это возможные конфигурации нервных импульсов, которые могут быть переданы в мозг от органов чувств. "Выходы" - это возможные (т.е. допустимые) действия (моторные акты) человека в ответ на ту или иную конфигурацию нервных импульсов на "входе".

Ясно, что объем сенсорной информации, которую наши органы чувств могут передать за конечное время в мозг, конечен. Следовательно, число возможных конфигураций нервных сигналов на "входе" также конечно (хотя и астрономически велико). Поскольку продолжительность жизни человека имеет верхний предел, то конечно и количество всевозможных последовательностей конфигураций нервных сигналов, которые может получить наш мозг на протяжении всей нашей жизни от всех органов чувств. Также конечно и число возможных реакций человека на эти возможные последовательности конфигураций сенсорных сигналов.

Таким образом, функция сознания, которая символически может быть представлена в виде:

{S0, S1,...Sn} Rn

где Si - конфигурация сенсорного входа в момент i; S0 - конфигурация сенсорного входа в момент рождения; Ri - реакция (действие) субъекта в момент i; - может рассматриваться как отображение одного конечного множество в другое конечное множество. Но в таком случае принципиально возможно составить "таблицу", в которой бы перечислялись все возможные последовательности конфигураций сенсорных сигналов на входе:

{S0, S1,...Sn}j и все возможные реакции на каждую из этих последовательностей {Ri}j.

Некоторый избранный фрагмент данной таблицы, изображающий "правильные" (т.е. "человеческие") реакции на ту или иную последовательность конфигураций сенсорных сигналов, будет представлять собой "программу" для системы искусственного интеллекта. Эти "программа" позволила бы подчиненному ей алгоритмическому устройству "в среднем" вести себя приблизительно таким же образом, каким ведет себя в сходных ситуациях человек (при учете предыстории каждой конкретной ситуации). Данная программа, в принципе, может быть построена путем последовательного отбора (селекции) тех элементов таблицы {S0, S1,...Sn} Rn, которые соответствуют типично человеческому поведению в ситуации Sn, имеющей предисторию S0, S1,...Sn-1. Эту селекцию, в принципе, могли бы осуществить некие люди-эксперты, специально нанятые для сортировки элементов таблицы.

Конечно, реально, физически такую "сортировку" осуществить невозможно - для этого потребовалось бы, вероятно, использовать все вещество Вселенной и временные интервалы, превосходящие длительность существования Вселенной. Но нас в данном случае интересует лишь принципиальная (т.е. в предположении наличия неограниченных материальных, энергетических и временных ресурсов), а не физическая осуществимость - поскольку именно такая принципиальная осуществимость и имеется в виду в теории алгоритмов. В этой теории учитывается лишь такая невычислимость, которая обусловлена принципиальными причинами - а именно, логической противоречивостью идеи существования того или иного алгоритма, а отнюдь не "физическая" невычислимость, обусловленная ограниченностью ресурсов.

Отсюда следует важный вывод: если окажется, что построить машину, выдерживающую "тест Тьюринга", невозможно, то эта невозможность будет проистекает не из каких-то принципиальных логических ограничений, не из теоремы Геделя о неполноте и не из алгоритмической невычислимости функции сознания, - а будет проистекать из некоторых физических ограничений ("нехватки ресурсов"). Иными словами, в этом случае нужно будет говорить не об "алгоритмической невычислимости", а о "физической невычислимости" функции сознания для любого алгоритмического устройства (мозг, при этом, не включается в число "алгоритмических устройств").

Однако отсюда, строго говоря, не следует, что функция сознания в целом является алгоритмически вычислимой. В самом деле, любой конечный фрагмент алгоритмически невычислимой функции, очевидно, представляет некоторую алгоритмически вычислимую функцию. Поэтому "вычислимый", алгоритмически имитируемый фрагмент функции сознания - ограниченный рамками конечной человеческой жизни, - может быть фрагментом некой "глобальной" алгоритмически невычислимой функции, не ограниченной какими-либо временными рамками.

Таким образом, мы не можем, исходя из факта конечности человека, утверждать, что человеческий интеллект, как таковой, подчинен какому-либо алгоритму (конечному набору правил). Речь идет лишь о том, какой смысл можно придать этому гипотетическому свойству невычислимости. Из сказанного можно сделать вывод, что принципиальная разница между человеком и машиной, если она действительно существует, может проявляться только на бесконечно больших временных интервалах. Иными словами, это может означать, что невозможно создать такую систему искусственного интеллекта, которая действовала как человек неограниченно долго, на сколь угодно больших временных интервалах. Но, еще раз подчеркнем, в силу конечности человека, ни теорема Геделя о неполноте формальных систем, ни какие-либо другие доводы в пользу "невычислимости" функции сознания, не накладывают принципиального запрета на создание алгоритмического устройства, способного имитировать человеческое поведение сколь угодно успешно на любых конечных временных интервалах.

Нужно, однако, заметить, что хотя алгоритмическая невычислимость не препятствует сама по себе созданию эффективного компьютерного "аналога" человеческого интеллекта, тем не менее описанный выше "метод" построения "алгоритма сознания" путем селекции элементов описанной "функциональной таблицы" не может дать положительных результатов в том случае, если мы попытаемся создать алгоритмическую модель не "интеллекта вообще", а модель какой-либо конкретной личности. Действительно, для того, чтобы построить "функциональную таблицу" для конкретной личности, необходимо выяснить как она, эта личность, будет вести себя в той или иной ситуации, учитывая при этом все возможные варианты "предисторий" для каждой мыслимой ситуации (т.е. учитывая все возможные последовательности конфигураций сенсорных сигналов, предшествующие данному моменту времени). Но для этого необходимо каждый раз "стирать" всю память субъекта и "заполнять" ее каким-либо новым содержанием - многократно возвращая, таким образом, личность к моменту рождения. Нет, однако, никаких гарантий, что такого рода "манипуляции" с человеческой психикой совместимы с сохранением индивидуального "Я", личности данного человека. Т.е, иными словами, мы не можем гарантировать, что имеем в этом случае дело все время с одной и той же личностью.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема Геделя о неполноте [Фейк] отзывы


Отзывы читателей о книге Теорема Геделя о неполноте [Фейк], автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x