Андрей Сафонов - Пушистые логарифмы
- Название:Пушистые логарифмы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005584243
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Андрей Сафонов - Пушистые логарифмы краткое содержание
Пушистые логарифмы - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Какие же возможности все это открывает перед нами? Примечательно: наиболее богатой бифуркациями системой в природе является человеческий мозг. Каждый из миллиардов нейронов связан примерно с 10 000 других нейронов, что порождает бездну возможных сигналов.
Если взглянуть на другую сторону медали, мы увидим: фактически все то, без чего сложно представить жизнь современного человека, будь то дома, книги, фильмы, песни, автомобили, айфоны, интернет, – было когда-то мыслями, стремительно пронесшимися в чьей-то голове. Интересно, какие же тогда мысли могут возникнуть в нашем сознании?
Мозг – настоящая лаборатория хаоса, в которой могут родиться идеи, меняющие мир. Остается только не упустить взмаха крыльев своей заветной бабочки.

Сокровенные аттракторы мечты
Слово «аттрактор» (от английского attract – привлекать) изначально возникло в узкоспециальной области дифференциальных уравнений, описывающих хаотические процессы, но сегодня приобретает все большую популярность даже в гуманитарных областях.
Наблюдая за, казалось бы, совершенно непредсказуемым поведением динамических систем, описывающих погоду или движение акций на рынке, математики обнаружили удивительную вещь: подобно скрытым узорам на бумаге, в хаотических процессах вырисовываются правильные структуры.
В какой-то момент запутанные траектории начинают «наматываться» на определенные контуры. К примеру, если заставить точку скакать по специальной формуле, где коэффициенты определяются случайным образом (скажем, через бросание кости), в конце концов она станет прыгать в точности по множеству, изображенному на рисунке, – «ковру Серпинского».
На этих законах основана оригинальная технология сжатия изображений: оказывается, для каждого изображения можно найти аналогичную формулу, которая заставит произвольную точку на мониторе вырисовывать то, что нужно.
Данная идея стала одной из ключевых в недавно родившейся на стыке теории хаоса и философии дисциплине – синергетике. Синергетика сосредотачивается на бесчисленных примерах самоорганизации в самых разных областях. Аттракторы встречаются в турбулентных течениях, на фондовых биржах, в образовании галактик, в работе мозга, и это наводит на предположение, что подобное вырисовывание узоров из хаоса – одно из базовых законов мироздания.
Целый вихрь интересных мыслей возникает, если приложить идею аттрактора к человеческой жизни. Что, если в нашей судьбе присутствуют своего рода «притягивающие множества»? К примеру, человек задумал написать книгу. И эта еще не написанная книга уже начинает из будущего выстраивать вокруг себя события его жизни. Ситуация, не имеющая для другого никакого значения, оказывается недостающим звеном для сюжета, полученные из книг и интернета случайные сведения – материалом, из которого ткется проявляющееся постепенно из небытия произведение.
Точно так же для физика, работающего над какой-то проблемой, случайно намагниченная железяка или нагревшаяся стенка холодильника может сказать то, чего никогда не скажет человеку со стороны.
Интересно, что аттракторы выстраивают себя сами, для их создания не требуется детального планирования и инженерного чертежа. Но все-таки от человека тоже кое-что зависит.
В теории хаоса есть такое важное понятие, как бифуркация – возможность точки в определенные моменты выйти на разные траектории, как бы разные ветви развития событий. Так же человек в своей жизни делает выбор: стать адвокатом, ученым, художником, музыкантом… После того как точка бифуркации пройдена, аттрактор начинает притягивать события, выстраивать их подобно тому, как магнит выстраивает железные опилки. И будущий художник «случайно» оказывается в Эрмитаже, а музыкант вдруг различает в повседневном потоке музыки контуры еще не проявившихся шедевров.
Нелинейная динамика проливает свет на внутренние процессы творчества: если бы в нем правил чистый хаос, это могло бы привести разве что к шизофрении, если бы правил только аналитический разум – были бы закрыты каналы для создания нового. Но в творчестве порядок творится из хаоса – так, из множества пролетающих идей рождается книга, а из случайных звуковых рядов появляется музыкальное произведение.
Поток окружающих нас явлений может показаться бессмысленным, но не сокрыты ли за этой бессмыслицей сокровенные аттракторы мечты?

Геометрия пчелиных сот и тайна шестиугольных кругов
Даже элементарные открытия, сделанные самостоятельно, могут сделать то, чего не сделают сотни зазубренных учебников, – вызвать настоящую теорию (изначально под этим словом пифагорейцы понимали мистический экстаз от соприкосновения с истиной). Теория – своего рода молния из страны смысла. Однажды, когда я готовил макароны, эта молния слегка коснулась меня. Я увидел, как раздувающиеся пузыри в кипящей воде в страшной давке за «место под солнцем» стали приобретать какие-то странные формы… Мгновенная вспышка, и я «увидел» ответ на вопрос, смутно терзавший меня с детства: почему в природе так часто встречаются шестиугольники? Пчелиные соты, клетки, узоры на панцирях черепах…
Шестиугольник – идеальная фигура, чтобы замостить плоскость без пробелов. Это уже что-то, т. к. для подобной цели не подойдут ни круги, ни семи- и девятиугольники. Но откуда пчелы знают о таких геометрических тонкостях? И почему не используют более простые треугольники или квадраты, которые тоже легко подгоняются друг к другу?
Для того чтобы пережить маленькую «теорию», делаем простую математическую модель без единой формулы. Возьмем горсть одинаковых монет. Одну поставим в центр, а другие расположим вокруг так, чтобы все они соприкасались друг с другом. Мы увидим между ними похожие на треугольники зазоры, из-за которых круглой плиткой мы плоскость не замостим. Но вот что интересно – сколько бы раз мы не проделывали этот эксперимент, монеток по краям всегда будет ровно шесть!
Представим теперь, что монетки начинают раздуваться, как пузыри, пытаясь отвоевать друг у друга пустое пространство. Конкуренция деформирует личности и целые народы, чего уж говорить о кругах… В случае равномерного давления шесть точек соприкосновения разобьют окружность на шесть дуг, каждая из которых в конечном итоге распрямится в отрезок, и мы получим идеальное шестиугольное замощение. Круг, шар – наиболее естественная форма заполнения пространства – из центра во все стороны. При «честной» конкуренции круги становятся шестиугольниками. В случае же неравной борьбы получаются пятиугольники и другие альтернативные формы «замощения».
Читать дальшеИнтервал:
Закладка: