Моррис Коэн - Введение в логику и научный метод

Тут можно читать онлайн Моррис Коэн - Введение в логику и научный метод - бесплатно ознакомительный отрывок. Жанр: Философия, издательство Социум, год 2010. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Введение в логику и научный метод
  • Автор:
  • Жанр:
  • Издательство:
    Социум
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-91603-029-7
  • Рейтинг:
    4/5. Голосов: 111
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Моррис Коэн - Введение в логику и научный метод краткое содержание

Введение в логику и научный метод - описание и краткое содержание, автор Моррис Коэн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На протяжении десятилетий эта книга служила основным учебником по логике и научному методу в большинстве американских вузов и до сих пор пользуется спросом (последнее переиздание на английском языке увидело свет в 2007 г.). Авторам удалось органично совместить силлогистику Аристотеля с формализованным языком математической логики, а методология познания излагается ими в тесной связи с логикой. Освещаются все стандартные темы, преподаваемые в базовом курсе по логике, при этом их изложение является более подробным, чем в стандартных учебниках. Как синтетический курс логики и научной методологии не имеет аналога среди отечественных учебников.

Значительная часть книги посвящена исследованию проблем прикладной логики: экспериментальным исследованиям, индукции, статистическим методам, анализу оценочных суждений.

В книге дается анализ предмета логики и природы научного метода, рассмотрение той роли, которую методы логики играют в научном познании, а также критика многих альтернативных подходов к истолкованию логики и науки в целом. В этом отношении она представляет собой самостоятельное философское произведение и будет интересна специалистам в области философии и методологии науки.

Для преподавателей логики, философии науки, теории аргументации и концепций современного естествознания, студентов, изучающих логику и методологию науки.

Введение в логику и научный метод - читать онлайн бесплатно ознакомительный отрывок

Введение в логику и научный метод - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Моррис Коэн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3. На данном этапе читатель может возразить: «Я все еще не вижу, чтобы было доказано, что пятый постулат является независимым от остальных. Вы показали, что, допустив постулат, противоречащий данному, можно получить совокупность теорем, отличающихся от теорем Евклида. Но вы еще не показали, что этот новый набор постулатов является непротиворечивым. И до тех пор, пока вы этого не сделаете, у вас не будет достаточно оснований, чтобы считать, что неевклидова геометрия действительно возможна».

Это вполне верно. Тот факт, что после того как любое конечное число теорем выведено из неевклидового набора допущений, не было встречено никаких противоречий, еще ничего не доказывает относительно непротиворечивости этого набора. Противоречие вполне может появиться после того, как будет получено большее количество теорем. Такое же возражение может быть приведено безотносительно количества выведенных теорем. Возражение читателя демонстрирует, насколько тесно связаны проблемы независимости и непротиворечивости в случае с набором суждений.

Мы, в свою очередь, также можем задать читателю вопрос. «Вы полагаете, что непротиворечивость неевклидовых геометрий не была доказана и что поскольку такого доказательства приведено не было, то сама их возможность поставлена под вопрос. Однако на каком основании вы считаете, что сама евклидова геометрия является непротиворечивой? Разумеется, верно то, что после двух тысяч лет ее изучения математики не обнаружили в ней каких-либо противоречий. Однако вы, конечно, не примете это в качестве доказательства. Поэтому в этом отношении, похоже, евклидова геометрия и неевклидовы геометрии находятся в одинаковом положении».

Попробуем разрешить затруднение читателя, еще раз обратившись к нашей миниатюрной математической системе и рассмотрев на ее примере эти же проблемы. Являются ли семь аксиом независимыми? Совместимы ли они друг с другом?

Математики обнаружили лишь один способ ответить на последний вопрос. Этот способ заключается в обнаружении набора сущностей, которые будут олицетворять отношения нашего набора абстрактных аксиом. При допущении о том, что эти сущности сами по себе не подвержены противоречию и что они на самом деле в полном смысле олицетворяют аксиомы, можно показать, что аксиомы также являются непротиворечивыми.

Проиллюстрируем то, как данный метод используется. Пусть числа от 0 до 6 включительно будут формировать различные группы по три числа в каждой нижеследующим образом:

Теперь рассмотрим эти семь чисел как элементы класса S Тогда каждый столбец - фото 82

Теперь рассмотрим эти семь чисел как элементы класса S. Тогда каждый столбец чисел будет представлять 1-класс. Несложный анализ показывает, что при такой интерпретации каждая из семи аксиом подтверждается на нашем наборе. Следовательно, аксиомы являются непротиворечивыми.

При этом следует подчеркнуть, что данный способ лишь отодвигает затруднение. Ведь все еще остается вопрос о том, является ли непротиворечивым данный набор сущностей, а также наш метод интерпретации. На этот вопрос в данное время полностью удовлетворительного ответа нет. Однако у нас есть определенная уверенность в том, что поскольку аксиомы Евклида позволили нам столь адекватно обращаться со свойствами и отношениями физических тел, то евклидова геометрия, как логическая система, также непротиворечива, поскольку мы полагаем, что ничто, находящееся в пространстве и времени, не может быть самопротиворечивым. Поскольку было показано, что неевклидовы геометрии сопоставимы (элемент к элементу) с евклидовой геометрией в соответствии с формулами определенной трансформации, следовательно, если в неевклидовой геометрии будет обнаружено противоречие, то соответствующее противоречие с необходимостью будет иметь место и в евклидовой геометрии [46] .

Обратимся еще раз к проблеме независимости аксиом и проиллюстрируем нашу проблему посредством нашей миниатюрной системы. Зависит ли аксиома 7\' от остальных аксиом? Ответ будет положительным, если первые шесть аксиом вместе с любым допущением, несовместимым с седьмой аксиомой, формируют непротиворечивое множество. Данное условие эквивалентно отысканию интерпретации, которая будет выполнять первые шесть аксиом и не будет выполнять седьмую. Такую интерпретацию можно дать несколькими способами, одним из которых является следующий:

Данные тринадцать чисел от 0 до 12 включительно являются членами S Каждый - фото 83

Данные тринадцать чисел от 0 до 12 включительно являются членами S. Каждый столбец из четырех чисел представляет 1-класс, принадлежащий S. На поверку оказывается, что выполняются все аксиомы, кроме седьмой. Следовательно, данная аксиома независима от остальных шести. Сходным образом мы можем показать, что любое другое допущение независимо от остальных.

§ 6. Математическая индукция

«Но не забываете ли вы, что в математике также имеет место индукция?» – может возразить читатель. «Вы описывали математику как типичную дедуктивную науку, в которой все теоремы являются необходимыми следствиями аксиом. Однако вы ведь не упустите из вида такой метод доказательства, как математическая индукция?».

Читатель, без сомнения, находится в ловушке слов. Действительно, существует метод математической индукции, однако это название не вполне удачно, поскольку подразумевает некое сходство с методом проведения экспериментов и подтверждения гипотез, использующимся в естественных науках. Однако такого сходства на самом деле нет, а математическая индукция является чисто доказательным методом.

Однако следует ли еще раз предостерегать читателя от распространенной ошибки спутывания временного порядка, в котором мы обнаруживаем те или иные суждения науки, и порядка их логической зависимости? Любой, кто когда-либо решал задачу по геометрии, знает, что существует подготовительная «стадия прощупывания», во время которой мы строим догадки, размышляем, строим вспомогательные линии и т. д. до тех пор, пока мы, как говорится, не наткнемся на доказательство. При этом никто не станет спутывать данную предварительную стадию, какой бы существенной она ни была, с достигаемым в итоге доказательством. Такая начальная стадия «прощупывания», действительно, обладает большим сходством с тем, как люди осуществляют исследования в какой бы то ни было сфере. Процесс проверки путем догадок характерен и для математического исследования, так же как и для исследования в естественных науках.

Принцип математической индукции может быть сформулирован следующим образом: если некоторое свойство принадлежит числу 1 и если, когда оно принадлежит числу п, можно доказать, что оно принадлежит и п + 1, то оно принадлежит всем числам. Докажем с помощью данного принципа следующую теорему для всех целочисленных значений п:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Моррис Коэн читать все книги автора по порядку

Моррис Коэн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Введение в логику и научный метод отзывы


Отзывы читателей о книге Введение в логику и научный метод, автор: Моррис Коэн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x