Моррис Коэн - Введение в логику и научный метод

Тут можно читать онлайн Моррис Коэн - Введение в логику и научный метод - бесплатно ознакомительный отрывок. Жанр: Философия, издательство Социум, год 2010. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Введение в логику и научный метод
  • Автор:
  • Жанр:
  • Издательство:
    Социум
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-91603-029-7
  • Рейтинг:
    4/5. Голосов: 111
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Моррис Коэн - Введение в логику и научный метод краткое содержание

Введение в логику и научный метод - описание и краткое содержание, автор Моррис Коэн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На протяжении десятилетий эта книга служила основным учебником по логике и научному методу в большинстве американских вузов и до сих пор пользуется спросом (последнее переиздание на английском языке увидело свет в 2007 г.). Авторам удалось органично совместить силлогистику Аристотеля с формализованным языком математической логики, а методология познания излагается ими в тесной связи с логикой. Освещаются все стандартные темы, преподаваемые в базовом курсе по логике, при этом их изложение является более подробным, чем в стандартных учебниках. Как синтетический курс логики и научной методологии не имеет аналога среди отечественных учебников.

Значительная часть книги посвящена исследованию проблем прикладной логики: экспериментальным исследованиям, индукции, статистическим методам, анализу оценочных суждений.

В книге дается анализ предмета логики и природы научного метода, рассмотрение той роли, которую методы логики играют в научном познании, а также критика многих альтернативных подходов к истолкованию логики и науки в целом. В этом отношении она представляет собой самостоятельное философское произведение и будет интересна специалистам в области философии и методологии науки.

Для преподавателей логики, философии науки, теории аргументации и концепций современного естествознания, студентов, изучающих логику и методологию науки.

Введение в логику и научный метод - читать онлайн бесплатно ознакомительный отрывок

Введение в логику и научный метод - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Моррис Коэн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Основная задача исчисления вероятности заключается в определении вероятности комплексного события на основании знания о вероятности составляющих этот комплекс событий. Два события считаются независимыми, если наличие или отсутствие одного не оказывает никакого влияния на наличие другого. Утверждение о том, что два события на самом деле независимы, является материальным допущением, которое следует формулировать в явной форме. Много серьезных ошибок происходит из применения исчисления вероятности в тех случаях, когда независимость событий предполагается без достаточных на то оснований или когда данное условие вообще игнорируется.

Вероятность совместного появления событий

Какова вероятность того, что орел выпадет два раза, если бросить монету тоже два раза? Это событие является сложным, а его компоненты – это орел при первом броске и орел при втором. Если данные события независимы, и если вероятность выпадения орла в каждом случае равна равна ½ то, согласно исчислению вероятности, вероятность совместного появления событий (выпадения орла при двух бросках) является произведением вероятности выпадения орла при каждом из бросков, т. е. ½× ½ или ¼ Мы сможем увидеть, почему данный результат является необходимым следствием сделанных допущений, если пронумеруем все события, являющиеся возможными при двух бросках монеты. Так, мы получаем: ОО, ОР, РО, РР , где порядок букв в каждой из групп обозначает одну возможную последовательность выпадения орла и решки. Таким образом, получается, что при сделанных допущениях имеется 4 равновероятные возможности и только одна, ОО , является благоприятной. Следовательно, согласно полученному результату, вероятность выпадения двух орлов равна ¼. Вообще, если а и Ь являются двумя независимыми событиями, то Р ( а ) – вероятность первого события, Р ( b ) – вероятность второго, а вероятность их совместного наличия – Р ( ab ) = Р ( а ) × Р ( b ).

При вычислении вероятности сложных событий необходимо проявлять внимание к тому, чтобы перечислить все возможные альтернативы. Если нам нужно установить вероятность выпадения по меньшей мере 1 орла при двух бросках монеты, то перечисление альтернатив дает 3 благоприятных события. Следовательно, вероятность получения по меньшей мере 1 орла равна ¾ Видные ученые допускали ошибки вследствие того, что не учитывали все возможные альтернативы. Например, согласно Д′Аламберу, вероятность выпадения по меньшей мере одного орла равна ⅔ О н перечислил возможные события как О, ОР, РР , утверждая, что если орел выпадет с первого раза, то нет необходимости продолжать броски, с тем чтобы получить, по крайней мере, одного орла. Однако данный анализ ошибочен, поскольку перечисленные им возможные события не являются равновероятными: первая альтернатива заключает в себе возможность двух различных событий, являющихся равновероятными с остальными.

Вероятность совместного появления двух событий иногда может высчитываться, даже если события не являются полностью независимыми. Допустим, в урне находится 3 белых и 2 черных шара, и предположим, что вероятность извлечения каждого из шаров одинакова по сравнению с остальными. Какова вероятность извлечения 2 белых шаров один за другим при первых двух попытках, если шары не заменяются при второй попытке? Изначально вероятность извлечения белого шара равна ⅗ Если извлечен белый шар (и при этом не заменен новым), то в урне остается два белых и два черных шара. Вероятность извлечения второго белого шара, если первый извлеченный шар был белым , равна 2∕4. Из этого следует, что вероятность извлечения двух белых шаров при описанных условиях равна ⅗× ½ или же 3∕10 [48] . Вообще Р ( а ) является вероятностью события а , а Ра(Ь) является вероятностью появления события Ь при появлении события а. Вероятность совместного появления событий: Р(аЬ) = Р(а) х Ра(Ь).

Вероятность одного из взаимоисключающих событий

Иногда нам требуется не вероятность совместного появления событий, а вероятность того, что произойдет одно из событий. Для этих целей мы вводим строго дизъюнктивные, или взаимоисключающие, события. Два события являются взаимоисключающими, если оба не могут произойти одновременно (если происходит одно, то другое отсутствует). При бросании монеты такие события, как выпадение орла или решки, считаются взаимоисключающими. Можно доказать, что вероятность того, что произойдет одно из взаимоисключающих событий, является суммой вероятностей каждого из событий. Какова вероятность получения 2 орлов или 2 решек при двух бросках монеты при допущении того, что вероятность выпадения орла равна ½и что броски осуществляются независимо? Вероятность выпадения двух орлов является произведением вероятностей выпадения орла при первом броске и орла при втором броске, т. е. ¼ Сходным образом вероятность выпадения двух решек равна ¼ Следовательно, вероятность выпадения либо двух орлов, либо двух решек равна ¼+ ¼ т. е. ½ Тот же результат получается при непосредственном применении определения вероятности к четырем возможным событиям: ОО, ОР, РО, РР . Два из перечисленных событий являются благоприятными. Следовательно, искомая вероятность равна 2/4 или ½ Вообще, если Р ( а ) и Р ( b ) являются возможностями двух взаимоисключающих событий соответственно, то вероятность получения одного из двух событий равна Р ( а + b ) = Р ( а ) + Р ( b ).

Две данные теоремы (теорема умножения для независимых событий и теорема сложения для взаимоисключающих событий) являются фундаментальными теоремами исчисления вероятности. С помощью самих этих теорем, а также с помощью их расширений можно с легкостью разрешить и более сложные проблемы. Предположим, что мы по одному разу извлекаем шары из двух урн. При этом в первой содержится 8 белых и 2 черных шара, а во второй —6 белых и 4 черных шара. Извлечение любого из шаров считается равновероятным. Какова вероятность того, что, когда мы извлечем по одному шару из каждой урны, по меньшей мере один из них будет белым? Вероятность извлечения белого шара из первой урны равна 8∕10, а из второй урны —6∕10. Возникает соблазн сложить эти дроби, с тем чтобы получить вероятность извлечения белого шара из любой из двух урн. Однако такой шаг будет ошибочным. О твет будет больше 1, что абсурдно. И действительно, в данном случае мы не можем просто складывать, поскольку данные события не являются взаимоисключающими. Однако мы можем получить нужный результат следующим образом: вероятность неизвлечения белого шара (т. е. извлечения черного шара) из первой урны равна 2∕10; а вероятность неизвлечения белого шара из второй урны равна 4∕10. Следовательно, предполагая, что извлечения осуществляются независимо, вероятность неизвлечения белого шара ни из первой, ни из второй урны равна 2∕10 × 4∕10, т. е. 8∕100. Следовательно, поскольку мы должны либо не извлечь ни одного белого шара из двух урн, либо извлечь хотя бы один, то вероятность извлечения по меньшей мере одного шара равна 1–8∕100, или 92∕100.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Моррис Коэн читать все книги автора по порядку

Моррис Коэн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Введение в логику и научный метод отзывы


Отзывы читателей о книге Введение в логику и научный метод, автор: Моррис Коэн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x