Знание-сила, 2007 № 09 (963)
- Название:Знание-сила, 2007 № 09 (963)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2007
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Знание-сила, 2007 № 09 (963) краткое содержание
Знание-сила, 2007 № 09 (963) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
По нашему убеждению, сложившаяся ситуация, когда физики, с одной стороны, и химики-биохимики- молекулярные биологи, с другой, разделены, должна быть изменена. Конгрессы, симпозиумы и конференции, на которых для рассмотрения фундаментальных вопросов вместе собираются физики, химики, математики и биологи, представляются совершенно необходимыми. В качестве ключевых проблем, которые целесообразно поставить перед приглашенными участниками, нам представляются следующие:
Существуют ли эксперименты в любой области знаний, которые, по Вашему мнению, квантовой теорией не могут быть адекватно объяснены?
Появились ли за годы, прошедшие со времени начала создания квантовой теории, данные, требующие создания новой теории, которая при определенных условиях (например, при больших временах, при которых пикосекунда — гигантское время) переходила бы в квантовую механику, как квантовая механика переходит в классическую?
Построен ли мир на фундаментальных законах на всех уровнях организации материи (в частности, выводятся ли структуры, возникающие в химии и биохимии, из теории атома — вопрос, положительный ответ на который очевиден для физиков) или же для его описания необходимо введение дополнительных закономерностей, возникающих только на уровне образования молекул (точка зрения, широко распространенная среди химиков, биохимиков, квантовых химиков и молекулярных биологов, для опровержения которой сегодня мировоззренческих и концептуальных доводов недостаточно — требуются более конкретные и доказательные научные аргументы)?
Александр Волков
Квантовые компьютеры сдают экзамен

В феврале 2007 года Херб Мартин, глава канадской фирмы «D-Wave- Systems», продемонстрировал первый в мире промышленно изготовленный квантовый компьютер, который может обрабатывать шестнадцать квантовых битов (кубитов, от слова q-бит) информации — цифра для подобных машин весьма внушительная.
Всего за пять лет до этого, в декабре 2001 года, Айзек Чуанг, сотрудник компании IBM, создал машину, которая обрабатывала семь квантовых битов информации. Она сумела определить, что делителями числа 15 являются числа 3 и 5. Это было тогда... самое сложное вычисление за всю историю квантовых компьютеров.
На первый взгляд тот эксперимент был не слишком эффектен, и все же он стал важным шагом на пути к созданию подлинно мощного квантового компьютера. Возможности этого компьютера ХХ1 века наглядно показывает следующий пример.
В одном из недавних экспериментов, чтобы разложить 158-значное число на простые множители, потребовалось несколько недель времени и сеть из 144 соединенных вместе компьютеров. А вот квантовый компьютер разложил бы подобное число на сомножители в течение считаных минут.

Эффективность квантовых компьютеров возрастает по экспоненте в зависимости от количества кубитов. Так, по своей мощности 50-кубитная машина эквивалентна кремневому компьютеру с объемом памяти в 128 тысяч гигабайт; 20- или 30-кубитные машины соответствуют стандартному ПК.
Компьютер Мартина оказался заметно производительнее прежних образцов. Его появление вновь пробудило надежды, что недалек тот день, когда наши вездесущие кремневые компьютеры окажутся таким же реликтом, как паровозы или аэропланы. Ведь им не по силам будет справиться с целым рядом задач, — например, быстрым поиском нужной информации в обширных банках данных, — с которыми играючи справится мощный квантовый компьютер.
В качестве кубитов в квантовых компьютерах обычно использовались спины атомов, ионов и электронов или поляризационные состояния фотонов. Фирма «D-Wave-Systems» применила, пожалуй, наиболее перспективную схему. Здесь в качестве q-битов использованы электрические переключающие схемы, встроенные в сверхпроводящий микрочип.
На первый взгляд этот микрочип мало чем отличается от аналогичных устройств, применяемых в традиционных компьютерах. Однако если охладить его почти до абсолютного нуля, то электроны проводимости образуют так называемые куперовские пары (они названы в честь американского физика Л. Купера, предсказавшего данный эффект). Эти пары будут перемещаться по токопроводящим дорожкам без потерь энергии. Под действием магнитного поля приходят в движение миллиарды куперовских пар, причем они могут перемещаться как против часовой стрелки (допустим, этому квантовому состоянию будет соответствовать «0»), так и по часовой стрелке (это будет «1»). Схема соединения проводников такова, что может происходить одновременное наложение шестнадцати квантовых состояний.
Разумеется, создание подобного компьютера потребовало очень сложных технических решений. Для сверхпроводящего микрочипа нужно было создать дорогостоящую систему охлаждения с применением жидкого гелия, а для защиты хрупких квантовых состояний — мощные электронные фильтры, иначе вся информация быстро стиралась бы.
Перед выполнением счетной операции требовалось предварительно программировать квантовый компьютер, а для этого в каждом витке проводника, по которому протекал ток, следовало «выставить» определенное квантовое состояние — ноль или единицу, пока последовательность q-битов не будет соответствовать алгоритму решения задачи. После этого компьютер приступил к выполнению работы, причем проделывал операции не последовательно, как традиционный ПК, а параллельно друг другу, то есть одновременно.
Подобные вычислительные устройства, подчеркнул Херб Мартин, представляя свой компьютер, наиболее подходят для решения сложных математических задач, требующих многократно повторяемых параллельных вычислений, например задач из области комбинаторной математики или задач по расчету поведения систем, содержащих множество элементов. Их можно использовать также в финансовой сфере, например для моделирования курса акций.
Квантовый компьютер Херба Мартина пока выполняет операции ничуть не быстрее традиционных компьютеров. Однако уже в следующем году фирма «D-Wave-Systems» обещает представить сверхпроводящий микрочип, который будет обрабатывать тысячу q-битов. Если удастся добиться его устойчивой работы, нас ожидает важный технологический прорыв.
Пока что квантовые компьютеры настолько чувствительны, что их работу необычайно трудно контролировать. Любое взаимодействие с окружающей средой может разрушить квантовое состояние, и тогда накопленная информация будет утрачена. Удастся ли нам приноровиться к подобным странностям квантового мира, обуздать их — покажет будущее, возможно, совсем близкое.
Читать дальшеИнтервал:
Закладка: