Знание-сила, 2005 № 08 (938)
- Название:Знание-сила, 2005 № 08 (938)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2005
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Знание-сила, 2005 № 08 (938) краткое содержание
Знание-сила, 2005 № 08 (938) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
И все-таки что-то общее у них есть. Деревянный мальчишка был таким легким, что не смог утонуть в болоте, а масса нейтрино гораздо меньше, чем у других частиц. Нейтрино столь слабо взаимодействуют с веществом, что свободно пролетают сквозь земной шар, Буратино, как известно, с ловкостью проходил все преграды. И наконец, если сказочный герой сначала появляется в виде полена, а потом становится человечком, то и нейтрино способно претерпевать удивительные метаморфозы. Например, мюонное нейтрино может в полете само по себе, без всякого внешнего воздействия превратиться в другую частицу — тау-нейтрино.
Неудивительно, что фундаментальная частица с ласковым названием, предсказанная в 1931 году В. Паули. относится к самым малоизученным объектам микромира. Нобелевский лауреат Виталий Гинзбург, составляя в разные годы свои знаменитые списки научных проблем, представляющихся ему на тот момент особенно важными и интересными, недаром каждый раз вносил в них тему «Нейтринная физика и астрономия. Нейтринные осцилляции».
V физиков долго не было ответа на вопрос, есть ли у нейтрино масса — традиционными способами ее измерить не удавалось. Сейчас почти нет сомнений, что масса нейтрино все-таки отлична от нуля, поскольку превращение одних типов нейтрино в другие, то есть осцилляции, возможны только в том случае, если массы осциллирующих нейтрино не равны друг другу, а значит, хотя бы у одного из них не равна нулю. Явление осцилляции лежит и в основе одной из загадок Солнца. Измеряемый поток солнечных нейтрино был гораздо меньше, чем диктовала теория. Только предположив, а потом и подтвердив с помощью эксперимента, что за восемь минут полета от нашего светила до Земли какая-то часть этих нейтрино успевает претерпеть метаморфозы, физики смогли свести концы с концами.
Ученые надеются, что исследование таинственных превращений поможет раскрыть многие свойства этой фундаментальной частички, которая имеет непосредственное отношение и к другим космическим процессам — развитию нашей Вселенной, существованию «темного вещества». Есть предположение, что сам механизм образования массы у нейтрино не такой, как у других частиц. Может быть, нейтрино — это окно в новую физику?
Поймать и исследовать загадочного «Буратино микромира» и будут пытаться участники OPERA. Кстати, хотя эта аббревиатура расшифровывается как Oscillation Project with Emulsion-tracking Apparatus, торговым знаком проекта является изображение оперного зала.
Директор Лаборатории ядерных проблем ОИЯИ, доктор физико-математических наук А. Г Ольшевский согласился ответить на некоторые вопросы по поводу проекта.
— Александр Григорьевич, как именно будет проводиться эксперимент?
— В ЦЕРНe с помощью пучка протонов в протонном ускорителе будет сформирован направленный пучок нейтрино. Практически со скоростью света он мгновенно пролетит под землей 730 километров до Лаборатории Еран Сассо, пройдет сквозь детекторы и полетит дальше. Основная задача ученых — зарегистрировать детекторами момент рождения тау-лептона. Эта частица может образоваться только от тау-нейтрино, которых — в том- то и фокус — изначально в пучке из ЦЕРНa не содержалось. Сам факт появления тау-нейтрино уже будет означать. что за доли секунды пути произошла осцилляция частицы. Чтобы исключить влияние космических лучей и соблюсти чистоту' эксперимента, лабораторию расположили на полуторакилометровой глубине — под горой, в боковых залах автомобильного туннеля на дороге Рим -Терамо.
— Что представляют собой сами детекторы?
— Стенки детектора складываются из «кирпичей», которые состоят из многих слоев фотоэмульсий и свинца. Между «кирпичами» закладывается так называемая система целеуказания из разных детекторов-сцинтилляторов для измерения параметров образующихся продуктов реакции. Автоматика регистрирует факт такой сцинтилляции, оценивает, в каком именно из «кирпичей» произошло взаимодействие, и его из стенки вынимают. Затем проявляют все слои фотоэмульсии, просматривают их, измеряют параметры оставленных на них следов реакции и только после этого делают окончательный вывод о наблюдавшемся событии.
Всего в эксперименте задействовано 62 стенки из 206336 «кирпичей», в каждом из которых — 57 слоев фотоэмульсии. Просмотр одного «кирпича» на самых современных компьютерах и специализированном оборудовании будет занимать десятки часов. А вообще экспериментальная установка — это огромное и сложное сооружение размерами примерно 10x10x100 метров, вмещающее несколько систем регистрации для обнаружения тау-лептона. Для ловли нейтрино нужна большая и густая сеть.
— Что конкретно в этом эксперименте делают украинские и российские ученые?
— Совместно с харьковскими коллегами мы делаем расчеты и моделирование установки, изготавливаем регистрирующие элементы системы целеуказания, собираем модули системы, проверяем и устанавливаем их в Гран Сассо. Для эксперимента потребовалась новая технология изготовления пластмассовых сцинтилляторов, которая была разработана на Украине в кратчайшие сроки. Общеевропейский конкурс показал несомненное преимущество харьковчан, в результате чего Институт спинтилляционных материалов НАНУ и получил этот серьезный европейский заказ.
Предполагается, что сам эксперимент начнется в 2007 году. Список всех участвующих стран, институтов и людей можно найти в Интернете по адресу: http://operaweb.web.cern.ch.operaweb/collaboration/members.shtml.
— Допустим, ученые, участвующие в проекте OPERA, поймают нейтрино...
— OPERA — это не первый, но и далеко не последний проект для охоты за многоликим нейтрино. Впереди у физиков — поиск нейтрино от сверхновых звезд, изучение атмосферных нейтринных аномалий, исследование антинейтрино. Есть еще одна задача — обнаружить космическое нейтринное реликтовое излучение, которое несет информацию о Вселенной спустя всего 1 секунду после начала ее расширения. Для этого нужны новые и новые эксперименты.
Сцинтилляторы активно используются сейчас везде, где есть необходимость в высокоэффективных, точных и быстродействующих детекторах ионизирующего излучения, откуда бы оно ни исходило — из естественного или искусственного материала, из тела человека или глубин космоса. Это физика высоких энергий, ядерная медицина и атомная энергетика, химия, биология, геология, радиационный мониторинг среды, определение содержимого радионуклидов в пищевых продуктах, строительных материалах и так далее.
До сих пор в роли сцинтилляторов использовались в основном монокристаллы или обладающие соответственными свойствами жидкости. Сейчас на мировую авансцену вышла более дешевая пластмасса. В мире, в том числе в Харькове, разрабатываются технологии выращивания сцинтилляторов самых разных размеров и конфигурации — гибких, поликристаллических большой площади, комбинированных на основе «пленка-кристалл», с регулируемым распределением выхода света и так далее. Создаются все более универсальные и сложные научные экспериментальные установки с крупногабаритными детекторами типа «сэндвич», которые содержат несколько десятков тонн сцинтилляторов в виде листов. Стрипов, тайлов, блоков.
Читать дальшеИнтервал:
Закладка: