Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
- Название:Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
- Автор:
- Жанр:
- Издательство:КоЛибри
- Год:2012
- Город:Москва
- ISBN:978-5-389-01770-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики краткое содержание
Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
То, что Лука Пачоли в 1494 году выразил бы как
4 Census p 3 de 5 rebus ae 0,
а Виет в 1591 году записал бы как
4 in A quad - 5 in A piano + 3 aequatur 0,
Декарт в 1637 году застолбил в виде
4 x 2- 5 x + 3 = 0.
Замена слов буквами и символами представляла собой нечто большее, чем просто удобное сокращение записи. Начало символу x положило сокращение для «неизвестной величины», но коль скоро такое обозначение возникло, оно превратилось в мощное средство, способствующее мышлению. Просто слово или сокращение нельзя подвергнуть математическим операциям так, как это делается с символом, подобным x. Появление числа сделало возможным счет; но буквенные символы вывели математику в новую область, простирающуюся далеко за пределы языка.
Пока задачи формулировались риторически, как это было в Египте, математики применяли изобретательные, но довольно бессистемные методы для их решения. Древние решатели задач были подобны участникам экспедиции, застрявшим в тумане и вынужденным полагаться лишь на несколько ухищрений, помогающих продвигаться вперед. Когда же задачи стали формулировать, используя символы, туман этот рассеялся, и перед математиками предстал мир с исключительно ясными очертаниями. Диво алгебры состоит в том, что порой одна лишь запись задачи в символическом виде уже почти дает ее решение.
Вернемся к тому фокусу, о котором я рассказал в начале главы. Я попросил вас назвать трехзначное число, в котором первая и последняя цифры различались бы по крайней мере на два. А далее требовалось получить второе число, переставив цифры в исходном числе в обратом порядке.
Затем надо было вычесть меньшее число из большего. Так что если вы выбрали число 614, то число с переставленными цифрами было бы равно 416, и 614 - 416 = 198. В качестве последнего действия предлагалось сложить полученную разность и число, получающееся в результате перестановки в ней цифр в обратном порядке. В только что выбранном примере это будет 198 + 891.
Как и раньше, ответ равен 1089. Таким он будет всегда — и алгебра объясняет нам почему. Но прежде всего нам надо выработать способ для записи нашего главного героя — трехзначного числа, в котором первая и последняя цифры различаются по крайней мере на два.
Рассмотрим число 614. Оно равно 600 + 10 + 4. На самом деле любое трехзначное число вида abc можно записать как 100 a + 10 b + с. Итак, пусть наше исходное число есть abc, где а, b и с — отдельные цифры. Для удобства будем считать, что а больше c .
Переставление цифр дает cba, что можно выразить как 100 c + 10 b + а.
Для получения промежуточного результата требуется вычесть cba из abc. Получаем, что abc - cba равно
(100 a + 10 b + с ) - (100 c + 10 b + а ).
Два члена с буквой b сокращают друг друга, так что промежуточный результат равен
99 a - 99 c , или 99( a - c ).
На своем начальном уровне алгебра не предполагает особо глубоких озарений, однако требует соблюдения ряда правил. Цель всего происходящего состоит в том, чтобы применять эти правила, пока выражение не станет максимально простым. Выражение 99( a - c ) приведено именно в такой вид, в какой нужно.
Поскольку первая и последняя цифры в числе abc различаются по крайней мере на 2, получаем, что а - с может иметь одно из значений 2, 3, 4, 5, 6, 7 или 8.
Тем самым, число 99( a - с ) — одно из следующих: 198, 297, 396, 495, 594, 693 или 792. С какого бы трехзначного числа мы ни начали, вычитание его из числа, записанного с помощью его же цифр, взятых в обратном порядке, даст промежуточный результат, который непременно будет равен одному из семи перечисленных чисел.
Заключительный этап состоит в том, чтобы сложить это промежуточное число с тем, которое получается из него изменением порядка цифр на противоположный.
Повторим то, что мы делали выше, в применении к промежуточному числу.
Пусть наше промежуточное число равно def, то есть 100 d + 10 e + f Требуется сложить def и fed.
Рассматривая приведенный список возможных промежуточных чисел, мы замечаем, что среднее число e всегда равно 9. Кроме того, первая и третья цифры всегда дают в сумме 9 — другими словами, d + f = 9.
Итак, def + fed равно
100 d + 10 e + f + 100 f + 10 e + d,
или
100( d + f ) + 20 e + d + f,
что есть
(100 × 9) + (20 × 9) + 9.
Или, другими словами,
900 + 180 + 9.
Вуаля! Сумма равна 1089 — и секрет фокуса раскрыт.
Элемент неожиданности в «фокусе 1089» состоит в том, что, какое бы число мы случайно ни выбрали, в ответе всегда получается одно и то же. Алгебра позволяет увидеть то, что скрыто за ловкостью рук, указывая путь, ведущий от конкретного к абстрактному, то есть предлагая следить не за поведением отдельного числа, а за поведением любого, произвольного числа. Это незаменимое средство, причем не только в математике. Другие науки также полагаются на язык уравнений.
В 1621 году во Франции вышел латинский перевод Диофантова шедевра «Арифметика». Новое издание оживило интерес к античным методам решения задач и в сочетании с усовершенствованными числовыми и буквенными обозначениями распахнуло двери в новую эру математического мышления. «Арифметика» Диофанта стала настольной книгой Пьера де Ферма [36] де Ферма́ Пьер (1601–1665) — выдающийся французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. Получил юридическое образование, с 1631 года занимал пост советника парламента в Тулузе. Ко всему прочему был блестящим полиглотом. ( Примеч. ред. )
(1601–1665), тулузского судьи и страстного математика-любителя, исписавшего поля всех ее страниц своими комментариями. В частности, рядом с разделом, где говорилось о Пифагоровых тройках — любых натуральных числах а, b и с , таких что а 2 + b 2 = с 2 (например, 3, 4 и 5), — Ферма отметил, что невозможно подобрать такие значения а , b и с , чтобы выполнялось равенство а 3 + b 3 = с 3 . Не смог он найти и значения а, b и с , для которых было бы верно а 4 + b 4 = с 4. В результате Ферма написал — там же, на полях «Арифметики», — что для всякого числа n, превышающего 2, невозможно найти значения а, b и с, которые удовлетворяли бы уравнению а n + b n = c n . «У меня имеется поистине чудесное доказательство, однако эти поля слишком узки для него», — написал он. Ферма так и не представил своего доказательства — чудесного или уж как получится, — даже когда узость полей его более не стесняла. Заметки Ферма на полях «Арифметики» отчасти указывают на то, что доказательство ему было известно, или же он сам уверовал, что его знает, а может, просто решил подзадорить публику. Во всяком случае, его нахальное заявление оказалось невероятной силы приманкой для многих поколений математиков, а само утверждение, вошедшее в науку как Великая теорема Ферма, оставалось самой знаменитой нерешенной задачей в математике до 1995 года, когда ее наконец продавил британец Эндрю Уайлс. Алгебра бывает обманчиво скромной в подобных ситуациях — она позволяет легко сформулировать задачу, которую решить оказывается совсем не легко. Вот и доказательство теоремы Ферма, предложенное Уайлсом, столь сложно, что, судя по всему, его понимают не более пары сотен человек во всем мире.
Интервал:
Закладка: