Юрий Ревич - Занимательная микроэлектроника

Тут можно читать онлайн Юрий Ревич - Занимательная микроэлектроника - бесплатно ознакомительный отрывок. Жанр: sci_radio, издательство БХВ-Петербург, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательная микроэлектроника
  • Автор:
  • Жанр:
  • Издательство:
    БХВ-Петербург
  • Год:
    2007
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9775-0080-7
  • Рейтинг:
    2/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 40
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Ревич - Занимательная микроэлектроника краткое содержание

Занимательная микроэлектроника - описание и краткое содержание, автор Юрий Ревич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок

Занимательная микроэлектроника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Ревич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В приведенном виде (см. рис. 3.5) схема по усилению исключительно плоха. В самом деле, все зависит от величины коэффициента h 21э, а он, во-первых, «гуляет» от транзистора к транзистору, во-вторых, очень сильно зависит от температуры (при повышении температуры повышается). Чтобы понять, как правильно построить усилительный транзисторный каскад со стабильными параметрами, нужно ознакомиться еще с одной схемой включения транзистора — схемой с общим коллектором .

Схема с общим коллектором

Схема с общим коллектором (ОК) показана на рис. 3.6. Учитывая, что напряжение базы и эмиттера никогда не отличается более чем на 0,6 В, мы придем к выводу, что выходное напряжение такой схемы должно быть меньше входного именно на эту величину. Так и есть, схема с общим коллектором иначе называется эмиттерным повторителем , поскольку выходное напряжение повторяет входное (за вычетом все тех же 0,6 В). Каков же смысл этой схемы?

Рис. 3.6. Схема включения биполярного транзистора по схеме с общим коллектором

Схема на рис. 3.6 усиливает сигнал по току (в число раз, определяемое величиной h 21э), что равносильно увеличению собственного входного сопротивления схемы ровно в h 21эпо отношению к тому сопротивлению, которое находится в цепи эмиттера. Поэтому в этой схеме мы можем подавать на «голый» вывод базы напряжение без опасности сжечь переход «база-эмиттер». Иногда это полезно само по себе, если не слишком мощный источник (т. е. обладающий высоким выходным сопротивлением), нужно согласовать с мощной нагрузкой (В главе 4 мы увидим, как это используется в источниках питания). Кстати, схема ОК не инвертирует сигнал , в отличие от схемы ОЭ.

Но главной особенностью схемы с общим коллектором является то, что ее характеристики исключительно стабильны и не зависят от конкретного транзистора, до тех пор, пока вы, разумеется, не выйдете за пределы возможного. Так, сопротивление нагрузки в эмиттере и входное напряжение схемы практически однозначно задают ток коллектора, — характеристики транзистора В этом деле никак не участвуют. Для объяснения данного факта заметим, что токи коллектора и эмиттера, т. е. ток через нагрузку, связаны между собой Соотношением I н= I к+ I б, но ток базы мал по сравнению с током коллектора, Потому мы им пренебрегаем и с достаточной степенью точности полагаем, что I н= I к. Но напряжение на нагрузке будет всегда равно входному напряжению минус U бэ, которое, как мы уже выучили, всегда 0,6 В. Таким образом, ток в нагрузке есть ( U вх— U бэ)/ R н, и тогда окончательно получаем, что

I к = ( U вх— U бэ)/ R н

Разумеется, мы по ходу дела приняли два допущения (что I б<< I ки что U бэесть точно 0,6 В — и то, и другое не всегда именно так), но мы же давно договорились, что не будем высчитывать характеристики схем с точностью до процентов! Ограничение, которое накладывается транзистором, будет проявляться тут только, если мы попробуем делать R нвсе меньше и меньше, в конце концов либо ток коллектора, либо мощность, выделяемая на коллекторе (она равна ( U пит— U вых)∙ I к), превысят предельно допустимые значения и тогда сгорит коллекторный переход или (если I кчем-то лимитирован) то же произойдет с переходом «база-эмиттер». Зато в допустимых пределах мы можем со схемой эмиттерного повторителя творить что угодно, и соотношение I к= ( U вх— U бэ)/ R нвсегда будет выполняться.

Про такую схему говорят, что она охвачена стопроцентной отрицательной обратной связью по напряжению . Об обратной связи мы подробнее поговорим в главе 6 , посвященной операционным усилителям, а сейчас нам важно, что такая обратная связь ведет к стабилизации параметров схемы и независимости их как от конкретного экземпляра транзистора, так и от температуры. Но ведь это именно то, чего нам так не хватало в классической схеме с общим эмиттером! Нельзя ли их как-то скомбинировать?

Стандартный усилительный каскад на транзисторе

Действительно, «правильный» усилительный каскад на транзисторе есть комбинация той и другой схемы, этот вариант показан на рис. 3.7.

Рис. 3.7. Стандартный усилительный каскад на биполярном транзисторе

Для конкретности предположим, что U пит= 10 В, U вх= 5 В. Как правильно рассчитать сопротивления R3 и RK? Заметим, что схема обладает двумя выходами, из которых нас больше интересует выход 1 (выход усилителя напряжения, соответствующий выходу в схеме с общим эмиттером по рис. 3.5).

При нормальной работе каскада (для обеспечения максимально возможного размаха напряжения на выходе) разумно принять, чтобы в состоянии покоя, т. е. когда U вх= 5 В, на выходе (на коллекторе транзистора) была половина напряжения питания (в нашем случае тоже примерно 5 В). Это напряжение зависит от коллекторного тока и от сопротивления нагрузки по этому выходу, которое равно в данном случае R к. Как правило, сопротивление нагрузки R кнам задано, примем для определенности, что R к= 5,1 кОм. Это означает, что в «хорошем» режиме, чтобы обеспечить U вых1= 5 В, ток коллектора должен составлять 1 мА — посчитайте по закону Ома!

Замечание

На самом деле средний ток коллектора в маломощном биполярном транзисторном каскаде и должен составлять величину порядка 1 мА. Если он много меньше, то в дело вступают шумы и прочие неидеальности транзистора, а когда много больше, то это неэкономно с точки зрения расходования энергии источника, и транзисторы нужно тогда выбирать более мощные, а у них намного больше шумы, утечки, они дороже, крупнее…

Но ток коллектора мы уже умеем рассчитывать, исходя из закономерностей для каскада ОК, он ведь равен ( U вх— U бэ)/ R э. Из этих условий получается, что резистор R эдолжен быть равен 4,3 кОм (мы всегда выбираем ближайшее значение из стандартного ряда сопротивлений, и больше не будем об этом упоминать). Мы не сильно нарушим законы природы, если просто положим в этой схеме R э= R к= 5,1 кОм (с точностью до десятых вольта выходные напряжения по обоим выходам будут равны — проверьте!).

Такая (очень хорошая и стабильная) схема нам не обеспечит никакого усиления по напряжению, это легко проверить, если при рассчитанных параметрах увеличить U вх, скажем, на 1 В. Напряжение на эмиттере увеличится также на 1 В, общий ток коллектора-эмиттера возрастет на 0,2 мА (1 В/5 кОм), что Изменит дополнительное падение напряжения на коллекторном резисторе (т. е. на нагрузке) также на 1 В в меньшую сторону (помните, что выходы инвертированы?). И никакого усиления не получится.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Ревич читать все книги автора по порядку

Юрий Ревич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная микроэлектроника отзывы


Отзывы читателей о книге Занимательная микроэлектроника, автор: Юрий Ревич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x