Юрий Ревич - Занимательная микроэлектроника

Тут можно читать онлайн Юрий Ревич - Занимательная микроэлектроника - бесплатно ознакомительный отрывок. Жанр: sci_radio, издательство БХВ-Петербург, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательная микроэлектроника
  • Автор:
  • Жанр:
  • Издательство:
    БХВ-Петербург
  • Год:
    2007
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9775-0080-7
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Ревич - Занимательная микроэлектроника краткое содержание

Занимательная микроэлектроника - описание и краткое содержание, автор Юрий Ревич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок

Занимательная микроэлектроника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Ревич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Зато! Мы в данном случае имеем схему, которая обладает двумя совершенно симметричными выходами: одним инвертирующим и другим, сигнал на котором точно совпадает по фазе с входным. Это дорогого стоит! Единственное, что портит картинку, — факт, что выходные сопротивления такой схемы сильно разнятся. Нагрузив нижний выход ( U вых2) какой-то еще нагрузкой (что равносильно присоединению параллельного резистора к R э), мы изменим общий ток коллектора, и напряжение верхнего выхода ( U вых1) также изменится. А обратного не получается, если мы уменьшим R к, нагрузив его, то U вых1изменится, но это практически никоим образом не скажется на U вых2. (А куда денется разница? Ну, разумеется, «сядет» на транзисторе!)

Как нам обеспечить полную (или близкую к таковой) симметричность схемы усилителя — чуть далее. А пока нас занимает вопрос — как же добиться усиления по напряжению? У меня есть микрофон или гитарный звукосниматель с выходом 1 мВ. Хочу получить на выходе хотя бы 100 мВ, чтобы хватило для линейного входа усилителя — ну и? Оказывается, все просто, нужно только «поступиться принципами», как говаривала незабвенная Нина Андреева еще в советские времена.

Принципы заключаются в следующем: в рассчитанной схеме мы старались все сбалансировать и обеспечить оптимальный режим работы транзистора. Но оптимального ничего не бывает, ранее мы отмечали, что коэффициент усиления по напряжению каскада с общим эмиттером зависит от соотношения сопротивлений (т. е. токов в базе и коллекторе). Нарушив его по отношению к оптимальному для транзистора, мы можем что-то улучшить для себя.

Практически это делается так: мы предполагаем, что максимально возможная амплитуда на входе каскада (относительно среднего значения) не превысит, допустим, 1 В. Тогда напряжение на базе не должно быть меньше 1,7 В, иначе при минимальном сигнале транзистор запрется, и напряжение на выходе будет ограничено снизу. Примем его равным 2 В для надежности. Номинал эмиттерного резистора R э(при все том же оптимальном токе коллектора 1 мА) будет тогда равен 1,3 кОм (= (2 В — 0,7)/1 мА). Нагрузка коллектора ( R к) пусть останется прежней (5,1 кОм). Обратите внимание, что на выходе U вых1среднее напряжение — напряжение покоя — осталось то же самое (5 В), т. к. ток не изменился.

Тогда каждый вольт изменения напряжения на входе даст уже примерно 4 вольта изменения напряжения на выходе U вых1т. е. коэффициент усиления по напряжению составит 4 (и будет примерно равен соотношению резисторов в коллекторе и эмиттере). Мы можем в определенных пределах увеличить этот коэффициент, уменьшая номинал R эвплоть до нуля (и тем самым все больше дестабилизируя схему, как показано при описании схемы с общим эмиттером), и одновременно уменьшая диапазон усиливаемых входных напряжений. Интересным свойством рассмотренной схемы является то, что абсолютное значение напряжения питания здесь не важно— рассчитанный на одно питание каскад сохранит все свои свойства, кроме максимально допустимого выходного напряжения, и при другом.

Для усилителей переменного тока хорошим — и часто используемым — приемом является шунтирование эмиттерного резистора конденсатором большой емкости. В результате режим усилителя по постоянному току (точка покоя, т. е. напряжение на коллекторе) обеспечен, а при наличии переменного входного напряжения эмиттерный резистор по номиналу уменьшается (ведь параллельно к нему подключен конденсатор, сопротивление которого тем меньше, чем выше частота, как мы узнали из главы 2 ), поэтому растет И коэффициент усиления напряжения всей схемы.

Дифференциальный каскад

Значительно улучшает схему комбинация двух одинаковых транзисторов в паре, соединенных эмиттерами — т. н. дифференциальный усилительный каскад . Дифференциальные каскады в силу их удобства широко применяли еще в эпоху недоступности микросхем (в том числе даже и в «ламповые» времена), но в настоящее время отдельно они практически не встречаются, а являются основой операционных усилителей. Тем не менее рассмотрим вкратце, как они работают.

Дифференциальный каскад, показанный на рис. 3.8, предполагает два раздельных одинаковых питания (плюс и минус) относительно «земли», но для самого каскада это есть не более, чем условность — питание всего каскада можно рассматривать, как однополярное (равное 10 + 10 = 20 В, согласно рис. 3.8), просто входной сигнал должен находиться где-то между этими значениями.

Рис. 3.8. Дифференциальный каскад на биполярных транзисторах

Ради удобства проектирования схем источник входного напряжения всегда привязывают к «земле», потенциал которой находится посередине (хотя и необязательно ровно посередине, но для удобства чаще поступают именно так) между Потенциалами источников питания самого каскада, т. е. общее питание рассматривают, как разделенное на два — положительное и отрицательное (такое питание еще называют двуполярным ). Относительно этой же общей «земли» Мы будем также отсчитывать выходные напряжения U вых1и U вых2.

Так как мы знаем, что база и эмиттер транзистора всегда «привязаны» друг к другу, то в этой схеме обе базы (в рабочем режиме) всегда будут иметь одинаковый потенциал. Поэтому если на них подавать один и тот же сигнал (базовые резисторы на рис. 3.8 не показаны), то ничего происходить не будет— току течь некуда, т. к. все потенциалы одинаковы. Вся конструкция из двух транзисторов будет смещаться относительно «земли» в соответствии с поданным сигналом, а на выходах ничего и не шелохнется (в идеале). Такой сигнал называют синфазным .

Иное дело, если сигналы на входах различаются, тогда они будут усиливаться. Такой сигнал называют дифференциальным (противофазным). Это основное свойство дифференциального усилителя, которое позволяет выделять небольшой сигнал на фоне довольно сильной помехи. Помеха одинаково — синфазно — действует на оба входа, а полезный сигнал усиливается.

Мы не будем здесь далее подробно разбирать работу этой схемы, только укажем некоторые ее особенности:

• входное сопротивление дифференциального каскада равно входному сопротивлению каскада с общим коллектором, т. е. достаточно велико;

• усиление по напряжению (для дифференциального сигнала) составляет 100 и более раз. Если вы хотите получить точно определенный коэффициент усиления, в каждый из эмиттеров нужно ввести по одинаковому резистору — тогда К усбудет определяться, как для каскада на рис. 3.7. Но обычно в таком режиме дифференциальный усилитель не используют. Основная область их применения — в системах с обратной связью, которая и задает необходимый коэффициент усиления (см. главу 6 );

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Ревич читать все книги автора по порядку

Юрий Ревич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная микроэлектроника отзывы


Отзывы читателей о книге Занимательная микроэлектроника, автор: Юрий Ревич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x