Юрий Ревич - Занимательная микроэлектроника

Тут можно читать онлайн Юрий Ревич - Занимательная микроэлектроника - бесплатно ознакомительный отрывок. Жанр: sci_radio, издательство БХВ-Петербург, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательная микроэлектроника
  • Автор:
  • Жанр:
  • Издательство:
    БХВ-Петербург
  • Год:
    2007
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9775-0080-7
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Ревич - Занимательная микроэлектроника краткое содержание

Занимательная микроэлектроника - описание и краткое содержание, автор Юрий Ревич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок

Занимательная микроэлектроника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Ревич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рис. 3.3. Первый в истории транзистор

(Фото Lucent Technologies Inc./Bell Labs)

Три вывода биполярного транзистора носят названия коллектор, эмиттер и база . Как ясно из рис. 3.2, б , база присоединена к среднему из трех полупроводниковых слоев. Так как, согласно показанной на рисунке полярности, потенциал базы более положителен, чем у эмиттера, то соответствующий диод всегда открыт для протекания тока. Парой страниц ранее мы убедились, что в этом случае на нем должно создаваться падение напряжения в 0,6 В. Именно так и есть — в рабочем режиме напряжение между эмиттером и базой всегда составляет приблизительно 0,6 В , причем на базе выше, чем на эмиттере (еще раз напомним, что для p-n-p- транзисторов напряжения обратные, хотя абсолютные величины их те же). А вот диод между коллектором и базой заперт обратным напряжением. Как же может работать такая структура?

Практически это можно себе представить, как если бы ток, втекающий в базу, управлял неким условным резистором, расположенным между коллектором и эмиттером (пусть вас не смущает помещенный там диод «коллектор-база», через него-то ток все равно не потечет). Если тока базы нет, т. е. выводы базы и эмиттера закорочены (здесь, главное, чтобы ( U бэбыло бы близко к нулю), тогда промежуток «эмиттер-коллектор» представляет собой очень высокое сопротивление, и ток через коллектор пренебрежимо мал (сравним с обратным током диода). В таком состоянии транзистор находится в режиме отсечки (говорят, что прибор заперт или закрыт).

В противоположном режиме ток базы велик ( U бэ= 0,6–0,7 В, как мы говорили ранее, при этом ток, естественно, ограничен специальным сопротивлением), тогда промежуток «эмиттер-коллектор» представляет собой очень малое сопротивление. Это режим насыщения , когда транзистор полностью открыт (естественно, в коллекторной цепи, как и в базовой, должна присутствовать какая-то нагрузка, иначе транзистор в этом режиме может просто сгореть). Остаточное напряжение на коллекторе транзистора может при этом составлять порядка 0,3 В. Эти два режима представляют часто встречающийся случай, когда транзистор используется в качестве ключа (или, как говорят, «работает в ключевом режиме»), т. е. как обычный выключатель тока.

Ключевой режим работы биполярного транзистора

А в чем смысл такого режима, спросите вы? Смысл очень большой — ток базы может управлять током коллектора, который как минимум на порядок больше, т. е. налицо усиление сигнала по току (за счет, естественно, энергии источника питания). Насколько велико может быть такое усиление? В режиме «ключа» почти для всех обычных типов современных транзисторов можно смело полагать коэффициент усиления по току (т. е. отношение максимально возможного тока коллектора к минимально возможному току базы I к/ I б) равным нескольким десяткам — не ошибетесь. Если ток базы и будет больше нужного — не страшно, он никуда не денется, открыться сильнее транзистор все равно не сможет. Коэффициент усиления по току в ключевом режиме еще называют «коэффициентом усиления по току в режиме большого сигнала» и обозначают буквой β . Есть особые «дарлингтоновские» транзисторы, для которых β может составлять до 1000 и более (обычно они составные, поэтому напряжение U бэу них заметно больше обычного: 1,2–1,5 В).

Рассмотрим подробнее ключевой режим работы транзистора ввиду его важности для практики. На рис. 3.4 показана простейшая схема включения транзистора в таком режиме, для наглядности — с лампочкой в качестве коллекторной нагрузки.

Рис. 3.4. Включение биполярного транзистора в ключевом режиме

Попробуем рассчитать необходимую величину резистора в базе. Как вы сейчас увидите, для транзисторных схем характерно, что напряжения в схеме никакой роли не играют, только токи: можно подключить коллекторную нагрузку хоть к напряжению 200 В, а базовый резистор питать от 5-вольтового источника, — если соотношение β > I к/ I бсоблюдается, то транзистор (при условии, конечно, что он рассчитан на такое высокое напряжение) будет послушно переключать 200-вольтовую нагрузку, управляясь от источника 5 В. Таким образом, налицо усиление сигнала по напряжению!

В нашем примере выбрана небольшая автомобильная лампочка 12 В, 100 мА (примерно, как для подсветки приборной доски в «Жигулях»), а цепь базы питается от источника 5 В. Расчет элементарно прост: при 100 мА в коллекторе, в базе должно быть минимум 10 мА (не глядя в справочник, ориентируемся на минимальное значение ( β = 10). Напряжение на базовом резисторе R бсоставит 5 В — 0,6 В = 4,4 В (о падении между базой и эмиттером забывать не следует), т. е. нужное сопротивление будет равно 440 Ом. Выбираем ближайшее меньшее из стандартного 5 %-ного ряда и получаем 430 Ом. Все?

Нет, не все. Схема еще не совсем доделана. Она будет работать нормально, если вы будете поступать так: подключать базовый резистор к 5 В (лампочка горит), а затем переключать его к «земле» (лампочка гаснет). Но довольно часто встречается ситуация, когда напряжение на базовый резистор подается-то нормально, а вот при отключении его резистор не присоединяется к «земле», а просто «повисает в воздухе» (именно этот случай и показан на схеме в виде контактов выключателя К). Так мы не договаривались. Чтобы транзистор был в режиме отсечки, надо установить равные потенциалы базы и эмиттера, а какой потенциал будет у базы, если она «в воздухе»? Это только формально, что ноль, а на самом деле всякие наводки— электричества-то вокруг полно — и внутренние процессы в транзисторе формируют небольшой базовый ток. И транзистор не закроется полностью, лампочка будет слабо светиться!

Это очень неприятный эффект, который даже может привести к выходу транзистора из строя. Избежать его просто: следует замкнуть базу и эмиттер еще одним резистором R бэ. Самое интересное, что рассчитывать его практически не нужно — лишь бы падение напряжения на нем при подаче напряжения на базу не составило меньше, чем 0,7 В. Его значение можно выбрать примерно в 10 раз больше, чем резистора R б(но если вы здесь поставите не 4,3 кОм, а, К примеру, 10 кОм, тоже не ошибетесь). Работать он будет так: если открывающее напряжение на R бподано, то он не оказывает никакого влияния на работу схемы, т. к. напряжение между базой и эмиттером все равно 0,6 В, и он только отбирает на себя очень небольшую часть базового тока (легко подсчитать, какую, поделив 0,6 на его значение 4,3 кОм, получится примерно 0,14 мА). А если напряжения нет, то R бэобеспечивает надежное равенство потенциалов базы и эмиттера, независимо от того, подключен ли базовый резистор к «земле» или «висит в воздухе».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Ревич читать все книги автора по порядку

Юрий Ревич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная микроэлектроника отзывы


Отзывы читателей о книге Занимательная микроэлектроника, автор: Юрий Ревич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x