Юрий Ревич - Занимательная микроэлектроника

Тут можно читать онлайн Юрий Ревич - Занимательная микроэлектроника - бесплатно ознакомительный отрывок. Жанр: sci_radio, издательство БХВ-Петербург, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательная микроэлектроника
  • Автор:
  • Жанр:
  • Издательство:
    БХВ-Петербург
  • Год:
    2007
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9775-0080-7
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Ревич - Занимательная микроэлектроника краткое содержание

Занимательная микроэлектроника - описание и краткое содержание, автор Юрий Ревич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок

Занимательная микроэлектроника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Ревич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Из всех полупроводниковых устройств исторически первыми были диоды.

Диоды

Диод— это простейший полупроводниковый прибор с двумя выводами, характеризующийся тем, что в одну сторону он проводит ток (т. е. представляет собой в идеале просто проводник с малым сопротивлением), в другую — нет (т. е. превращается в очень большое сопротивление) — одним словом, обладает односторонней проводимостью. Выводы диода, как повелось еще со времен ламповой техники, называют анодом (положительный) и катодом (отрицательный). Не всегда понятно, что означают слова «положительный» и «отрицательный» в приложении к некоторым включениям диодов, потому конкретизируем: если подать на анод положительное напряжение, то диод будет проводить ток. В обратном включении ток не пройдет.

Если подключить диод к регулируемому источнику напряжения, то он будет вести себя так, как показано на рис. 3.1, где представлена т. н. вольт-амперная характеристика диода . Из нее, в частности, следует, что в прямом включении (т. е. анодом к плюсу источника), после превышения некоторого напряжения ( U пр), прямой ток через диод ( I пр) растет неограниченно и будет лимитироваться только мощностью источника. На самом деле без нагрузки Диоды, за редкими исключениями, не включают, и тогда в прямом включении ток ограничивается нагрузкой.

Рис 31 Вольтамперная характеристика диода В обратном же включении катодом - фото 10

Рис. 3.1. Вольт-амперная характеристика диода

В обратном же включении (катодом к плюсу) ток через диод ( I обр) пренебрежимо мал и составляет от нескольких микро- или даже наноампер для обычных маломощных диодов, до единиц миллиампер для мощных выпрямительных. Причем для германиевых диодов обратный ток намного выше, чем для кремниевых, отчего их сейчас практически и не употребляют. Этот ток сильно зависит от температуры и может возрасти на несколько порядков (от нано- до микроампер) при повышении температуры от-50 до +50 °C, поэтому на графике его величина показана очень приблизительно (обратите внимание, что верхняя и нижняя половины графика по оси токов построены в разных масштабах).

В отличие от обратного тока, прямое падение напряжения U пргораздо меньше зависит как от типа и конструкции прибора, так и от температуры. Для кремниевых диодов прямое падение напряжения U пр всегда можно считать равным примерно 0,6–0,7 В , для германиевых или так называемых диодов Шоттки эта величина составляет 0,2–0,4 В. Для кремниевых диодов при изменении температуры на один градус U призменяется примерно на 2,3 мВ.

Если умножить указанное прямое падение напряжения на проходящий через диод в прямом включении ток, то мы получим тепловую мощность, которая выделяется на диоде. Именно она приводит диоды к выходу из строя — при превышении допустимого тока они просто сгорают. Впрочем, тепловые процессы инерционны, и в справочниках указывается обычно среднее значение допустимого тока, а мгновенное значение тока, в зависимости от длительности импульса, может превышать предельно допустимое в сотни раз! Обычное значение среднего предельно допустимого тока через маломощные диоды — десятки и сотни миллиампер. Мощные диоды (при токах 3–5 А и выше) часто приходится устанавливать на радиаторы.

Другая характеристика диодов — предельно допустимое обратное напряжение. Если оно превышено, то диоды также выходят из строя — электрически пробиваются и замыкаются накоротко. Обычная допустимая величина обратного напряжения для маломощных диодов — десятки вольт, для выпрямительных— сотни вольт, но есть диоды, которые выдерживают и десятки тысяч вольт. Далее мы увидим, что существуют приборы, для которых пробой в обратном включении является рабочим режимом, — они называются стабилитронами.

Подробности

Физически диод состоит из небольшого кристаллика полупроводникового материала, в котором в процессе производства формируются две зоны с разными проводимостями, называемыми проводимостью n - и p -типа. Ток всегда течет от p-зоны к n-зоне (это стоит запомнить), в обратном направлении диод заперт. Более подробные сведения о физике процессов, происходящих в р-n -переходе, излагаются во множестве пособий, включая школьные учебники, но для практической деятельности почти не требуются.

Транзисторы

Транзистор— это электронный полупроводниковый прибор, предназначенный для усиления сигналов. Первым таким прибором в истории была электронная лампа (а еще до нее, кстати — электромагнитные реле, которые мы кратко рассмотрим далее). Лампа сумела сделать немало — именно в «ламповую» эпоху возникли радио и телевидение, компьютеры и звукозапись. Но только транзистор и появившиеся на его основе микросхемы сумели действительно перевернуть мир так, что электронные устройства вошли в наш повседневный быт и мы теперь уже не мыслим себя без них.

Транзисторы делятся на биполярные и полевые (или униполярные ). Пока мы будем говорить только о биполярных транзисторах.

Физически биполярный транзистор — это структура из трех слоев полупроводника, разделенных двумя р-n -переходами. Поэтому можно себе представить, что он состоит как бы из двух диодов, один из слоев у которых общий, и это весьма близко к действительности! Скомбинировать два диода можно, сложив их либо анодами, либо катодами, соответственно, различают n-р-n - и р-n-р -транзисторы, которые отличаются только полярностями соответствующих напряжений. Заменить n-р-n -прибор на аналогичный р-n-р можно, просто поменяв знаки напряжений во всей схеме на противоположные (и все полярные компоненты — диоды, электролитические конденсаторы — естественно, тоже надо перевернуть). Транзисторов n-р-n -типов выпускается гораздо больше, и употребляются они чаще, поэтому мы пока что будем вести речь исключительно о них, но помнить, что все сказанное справедливо и для р-n-р -структур, с учетом обратной их полярности. Правильные полярности и направления токов для n-р-n -транзистора показаны на рис. 3.2.

Рис. 3.2. Биполярный транзистор:

а— рабочие полярности напряжений и направления токов в n-р-n -транзисторе ( к — коллектор, б — база, э — эмиттер); б— условное представление транзистора, как состоящего из двух диодов

Первый в истории транзистор был построен в знаменитых Лабораториях Белла (Bell Labs) Дж. Бардиным и У. Браттайном по идеям Уильяма Брэдфорда Шокли в 1947 году. В 1956 году все трое были удостоены Нобелевской премии. Кроме изобретения транзистора, У. Шокли известен также, как один из основателей знаменитой Кремниевой долины — технополиса в Калифорнии, где сегодня расположено большинство инновационных полупроводниковых и компьютерных фирм. Из фирмы Шокли, под названием Shockley Semiconductor Labs, вышли, в частности, Гордон Мур и Роберт Нойс — будущие основатели крупнейшего ныне производителя микропроцессоров фирмы Intel. Г. Мур еще известен, как автор знаменитого «закона Мура», а Р. Нойс — как изобретатель микросхемы (совместно с Д. Килби — подробнее см. главу 6 ).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Ревич читать все книги автора по порядку

Юрий Ревич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная микроэлектроника отзывы


Отзывы читателей о книге Занимательная микроэлектроника, автор: Юрий Ревич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x