Юрий Ревич - Занимательная микроэлектроника
- Название:Занимательная микроэлектроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-9775-0080-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная микроэлектроника краткое содержание
Для широкого круга радиолюбителей
Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Результаты таких упражнений могут быть весьма неожиданными и вовсе неочевидными: скажем, при сложении двух синусоидальных колебаний с одинаковой частотой и амплитудой, как на рис. 2.3–2.4, но со сдвигом фаз в 180° (когда колебания находятся в противофазе), их сумма будет равна нулю на всем протяжении оси времени! А если амплитуды таких колебаний не равны друг другу, то в результате получится такое же колебание, амплитуда которого равна разности амплитуд исходных.
Рис. 2.4. Суммирование колебаний:
1— исходные колебания; 2— их сумма
Этот факт иногда используется для того, чтобы получить нестандартные напряжения с трансформатора с несколькими обмотками — если их обмотки подключить последовательно (начало одной к концу другой, см. главу 4 ), то напряжения суммируются, а если их включить встречно (начало одной к началу другой), то напряжения вычтутся, причем при строго одинаковых обмотках напряжение на выходе будет равно нулю!
Если у вас есть какой-нибудь низковольтный трансформатор под рукой, то можете поэкспериментировать с соединением вторичных обмоток, учитывая при этом, что начала обмоток будут иметь нечетные номера, а концы — четные. Только не ошибитесь, и не замкните что-нибудь с сетевой (первичной) обмоткой — это опасно и для вас, и для трансформатора, и для предохранителей в квартире. Так что если трансформатор вам незнаком, то необходимо сначала добыть его описание и определить, где у него сетевая обмотка.
Значения напряжения, естественно, можно измерять любым мультиметром, но вот вопрос на засыпку: что именно будет показывать вольтметр переменного тока? Ведь измеряемая величина все время, с частотой 50 раз в секунду, меняется от минимального отрицательного до максимального положительного значения, т. е. в среднем равна нулю. Тем не менее вольтметр нам покажет совершенно определенное значение. Для ответа на вопрос, какое именно, отвлечемся от колебаний и поговорим об еще одной важнейшей Величине, которая характеризует электрический ток: о мощности .
Согласно определению, мощность есть энергия (работа), выделяемая в единицу времени . Единица мощности называется ваттом (Вт). По определению, 1 ватт есть такая мощность, при которой за 1 секунду выделяется (или затрачивается — смотря с какой стороны поглядеть) 1 джоуль энергии. Для электрической цепи ее очень просто подсчитать по закону Джоуля-Ленца: Р(ватт) = U(вольт) ∙ I(ампер). Если подставить в формулу мощности выражения связи между током и напряжением по закону Ома, то можно вывести еще два часто употребляющихся представления закона Джоуля-Ленца: P= I 2∙ Rи P= U 2/ R.
Заметки на полях
Формулу закона Джоуля-Ленца очень просто вывести из определений тока и напряжения (см. главу 1 ). Действительно, размерность напряжения есть джоуль/кулон, а размерность тока — кулон/секунда. Если их перемножить, то кулоны сокращаются и получаются джоули в секунду, что, согласно данному ранее определению, и есть мощность. Обратите также внимание на одно важное следствие из этих формул: мощность в цепи пропорциональна квадрату тока и напряжения. Это означает, что если повысить напряжение на некоем резисторе вдвое, то мощность, выделяющаяся на нем, возрастет вчетверо. Отметьте также, что от величины сопротивления мощность зависит линейно: если вы при том же источнике питания уменьшите сопротивление вдвое, то мощность в нагрузке возрастет также вдвое. Это именно так, хотя факт, что, согласно закону Ома, ток в цепи увеличится также вдвое, мог бы нас привести к ошибочному выводу, будто в этом случае выделяющаяся мощность возрастет вчетверо — если вы внимательно проанализируете формулировки закона Джоуля-Ленца, то поймете, где здесь «зарыта собака».
В электрических цепях энергия выступает чаще всего в виде теплоты, поэтому электрическая мощность в подавляющем большинстве случаев физически означает просто количество тепла, которое выделяется в цепи (если в ней нет электромоторов или, скажем, источников света). Вот и ответ на вопрос, который мог бы задать пытливый читатель еще при чтении первой главы: куда расходуется энергия источника питания, «гоняющего» по цепи ток? Ответ: на нагрев сопротивлений нагрузки, включенных в цепь. И даже если нагрузка представляет собой, скажем, источник света (лампочку или светодиод), то большая часть энергии все равно уходит в тепло: КПД лампы накаливания (т. е. та часть энергии, которая превращается в свет), как известно, не превышает нескольких процентов. У светодиодов эта величина значительно выше, но и там огромная часть энергии уходит в тепло. Кстати, из этого следует, например, что ваш компьютер последней модели, который потребляет далеко за сотню ватт, также всю эту энергию переводит в тепло — за исключением исчезающе малой ее части, которая расходуется на свечение экрана и вращение жесткого диска. Такова цена информации!
Если мощность, выделяемая в нагрузке, превысит некоторую допустимую величину, то нагрузка просто сгорит. Поэтому различные типы нагрузок характеризуют предельно допустимой мощностью, которую они могут рассеять без необратимых последствий. А сейчас зададимся вопросом: что означает мощность в цепях переменного тока?
Для того чтобы понять смысл этого вопроса, давайте внимательно рассмотрим график синусоидального напряжения на рис. 2.2. В каждый момент времени величина напряжения различна, соответственно будет разной и величина тока через резистор нагрузки, на который мы подадим такое напряжение. В моменты времени, обозначенные Т /2 и Т (т. е. кратные половине периода нашего колебания), напряжение на нагрузке вообще будет равно нулю (ток через резистор не течет), а в промежутках между ними — меняется вплоть до некоей максимальной величины, равной амплитудному значению А . Точно так же будет меняться ток через нагрузку, а следовательно, и выделяемая мощность. Но процесс выделения тепла крайне инерционен — даже такой маленький предмет, как волосок лампочки накаливания, за 1/100 секунды, которые проходят между пиками напряжения в промышленной сети частотой 50 Гц, не успевает заметно остыть. Поэтому нас чаще всего интересует именно средняя мощность за большой промежуток времени. Чему она будет равна?
Для того чтобы точно ответить на этот вопрос, нужно взять интеграл: средняя мощность за период есть интеграл по времени от квадрата функции напряжения. Здесь мы приведем только результат: величина средней мощности в цепи переменного тока определяется т. н. действующим значением напряжения ( U д), которое для синусоидального колебания связано с амплитудным его значением ( U a) следующей формулой: U a= U д∙√2. Аналогичная формула справедлива для тока. Когда говорят «переменное напряжение 220 В», то всегда имеется в виду именно действующее значение. При этом амплитудное значение равно примерно 311 вольт, что легко подсчитать, если умножить 220 на корень из двух. Это всегда нужно учитывать при выборе компонентов для работы в сетях переменного тока. Если взять диод, рассчитанный на 250 В, то он легко может выйти из строя при работе в обычной сети, в которой мгновенное значение превышает 300 В, хотя действующее значение и равно 220. А вот для компонентов, обладающих эффектом нагревания (лампочек, резисторов и т. п.) при расчете допустимой мощности, следует подставлять именно действующее значение.
Читать дальшеИнтервал:
Закладка: