Юрий Ревич - Занимательная электроника
- Название:Занимательная электроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-9775-3479-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная электроника краткое содержание
На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.
Для широкого круга радиолюбителей
Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Рис. 4.3. График синусоидальных колебаний, сдвинутых по фазе на четверть периода
Эта величина носит название фазы . Взятая для одного отдельного колебания, величина фазы выглядит не имеющей особого смысла, т. к. мы всегда можем сместить точку начала отсчета времени так, чтобы привести уравнение к виду (1), а, соответственно, график — к виду рис. 4.2, и при этом ничего не изменится. Однако все будет выглядеть иначе, если мы имеем два связанных между собой колебания — скажем, напряжения в разных точках одной схемы. В этом случае нам может быть важно, как соотносятся их величины в каждый момент времени, и тогда фаза одного переменного напряжения относительно другого (называемая в этом случае сдвигом или разностью фаз ) и будет характеризовать такое соотношение. Для колебаний, представленных на рис. 4.3, сдвиг фаз равен 90° ( π /2 радиан). Именно для наблюдения таких колебаний совместно и предназначен многоканальный или многолучевой осциллограф — в обычном фаза колебания определяется только настройками синхронизации.
Интересно, что получится, если мы такие «сдвинутые» колебания суммируем? Не надо думать, что это есть лишь теоретическое упражнение — суммировать электрические колебания разного вида нам придется довольно часто. Математически это будет выглядеть, как сложение формул (1) и (2):
U= A 1· sin( 2πf 1t) + A 2· sin( 2πf 2t+ φ). (3)
Обратите внимание, что в общем случае амплитуды и частоты колебаний различны (на рис. 4.3 они одинаковы!).
Чтобы представить себе наглядно результат, надо проделать следующее: скопировать графики на миллиметровку, разделить период колебаний на некоторое количество отрезков и для каждого отрезка сложить величины колебаний (естественно, с учетом знака), а затем построить график по полученным значениям. Еще удобнее проделать то же самое на компьютере — надо лишь написать программу, которая вычисляет значения по формуле (3) и строит соответствующие графики. Конечно, можно и не писать собственную программу, а использовать готовую, — скажем, Excel прекрасно умеет выполнять подобные операции.
Для иллюстрации продемонстрируем (рис. 4.4), что получится, если сложить два колебания, которые были представлены на рис. 4.3. Я не буду приводить картинки для иных случаев, т. к. интересных комбинаций может быть довольно много, но очень рекомендую потратить время на эти упражнения, потому что результаты могут быть весьма неожиданными и вовсе неочевидными. Скажем, при сложении двух синусоидальных колебаний с одинаковой частотой и амплитудой, но со сдвигом фаз в 180° (когда колебания находятся в противофазе), результирующая сумма будет равна нулю на всем протяжении оси времени! А если амплитуды таких колебаний не равны друг другу, то в результате получится такое же колебание, амплитуда которого в каждой точке равна разности амплитуд исходных. Запомним этот факт — он нам пригодится, когда мы будем рассматривать усилители звуковой частоты с обратной связью (см. главу 8 ).

Рис. 4.4. Суммирование колебаний, сдвинутых по фазе на четверть периода
1— исходные колебания, 2— их сумма
Можно ли проверить на практике это положение? Для этого нам придется немного забежать вперед: потребуется сетевой трансформатор с двумя вторичными обмотками. Обмотки эти нужно соединить последовательно так, чтобы конец одной обмотки соединялся с концом другой (как находить начала и концы обмоток трансформатора, будет рассказано в главе 9 ). В обмотках трансформатора напряжения имеют одинаковую частоту и фазу, зависящую от способа их соединения — если соединить так, как указано (конец с концом), то сдвиг фаз составит ровно 180°, т. е. мы воспроизведем условия нашего эксперимента. Теперь осталось только включить трансформатор в сеть и присоединить к свободным выводам обмоток вольтметр (естественно, настроенный для измерения переменного напряжения). Мы получим именно то, что предсказано расчетом: если обмотки одинаковые (т. е. амплитуды напряжений в них одни и те же), то вольтметр не покажет ничего — несмотря на то, что сами напряжения в обмотках могут быть сколь угодно велики! Если же обмотки имеют разное количество витков, то результат измерения будет равен разности напряжений. Комбинируя различные обмотки таким образом, мы можем заставить трансформатор выдавать напряжения, которые в нем вовсе не были предусмотрены!
А вот вопрос на засыпку — что показывал вольтметр в предыдущем эксперименте? Ведь измеряемая величина все время, с частотой 50 раз в секунду, меняется от отрицательного до точно такого же положительного значения, т. е. в среднем напряжение строго равно нулю — и тем не менее, вольтметр нам показывал совершенно определенное значение. Для ответа на этот вопрос отвлечемся от колебаний и поговорим о еще одной важнейшей величине, которая характеризует электрический ток, — о мощности.
Согласно определению, мощность есть энергия (работа), выделяемая в единицу времени. Единица мощности называется ватт (Вт). По определению, 1 ватт есть такая мощность, при которой за 1 секунду выделяется (или затрачивается — смотря с какой стороны поглядеть) 1 джоуль энергии. Для электрической цепи ее очень просто подсчитать по закону Джоуля — Ленца:
N(ватт) = U(вольт)· I(ампер)
Эту формулу несложно вывести из определений тока и напряжения (см. главу 1 ).
Действительно, размерность напряжения есть джоуль/кулон, а размерность тока — кулон/секунду. Если их перемножить, то кулоны сокращаются и получаются джоули в секунду — что, согласно приведенному ранее определению, и есть мощность.
Если подставить в формулу для электрической мощности выражения связи между током и напряжением по закону Ома, то можно вывести еще два часто употребляющихся представления закона Джоуля — Ленца:
N= I 2 Rи N= U 2/ R
Обратите внимание на одно важное следствие из этих формул — мощность в цепи пропорциональна квадрату тока или напряжения. Это означает, что если повысить напряжение на некоем резисторе вдвое, то мощность, выделяющаяся на нем, возрастет вчетверо.
А вот от сопротивления мощность зависит линейно — если вы при том же источнике питания уменьшите сопротивление вдвое, то мощность в нагрузке также возрастет только вдвое. Это именно так, хотя факт, что согласно закону Ома ток в цепи увеличится также вдвое, мог бы нас привести к ошибочному выводу, будто в этом случае выделяющаяся мощность возрастет вчетверо. Но если вы внимательно проанализируете формулировку закона Джоуля — Ленца, то поймете, где здесь зарыта собака — ведь в произведении U· Iувеличивается только ток, а напряжение остается тем же самым.
Читать дальшеИнтервал:
Закладка: