Юрий Ревич - Занимательная электроника

Тут можно читать онлайн Юрий Ревич - Занимательная электроника - бесплатно ознакомительный отрывок. Жанр: sci_radio, издательство БХВ-Петербург, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательная электроника
  • Автор:
  • Жанр:
  • Издательство:
    БХВ-Петербург
  • Год:
    2015
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9775-3479-6
  • Рейтинг:
    2.9/5. Голосов: 921
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Ревич - Занимательная электроника краткое содержание

Занимательная электроника - описание и краткое содержание, автор Юрий Ревич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.

Для широкого круга радиолюбителей

Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок

Занимательная электроника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Ревич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 92 Типовые разрядные кривые щелочного элемента типоразмера Dпри 20 C и - фото 60

Рис. 9.2. Типовые разрядные кривые щелочного элемента типоразмера Dпри 20 °C и различных сопротивлениях нагрузки

(по данным Duracell/Procter & Gamble)

Рис 93 Типовые разрядные кривые щелочного элемента типоразмера ААпри 20 C и - фото 61

Рис. 9.3. Типовые разрядные кривые щелочного элемента типоразмера ААпри 20 °C и различных сопротивлениях нагрузки

(по данным Duracell/Procter & Gamble)

Некоторые типовые разрядные кривые для различных элементов и режимов показаны на рис. 9.1–9.3. Такие графики приводятся в документации, которую можно разыскать на сайтах производителей, и с их помощью уточнить энергоемкость. При необходимости подобные данные несложно получить и самостоятельно, замкнув элемент на нужное сопротивление в требуемых условиях и периодически отмечая напряжение. Для того чтобы получить из этих данных энергоемкость в миллиампер-часах (мА-ч), следует поделить среднее за время разряда значение напряжения на нагрузку в омах и умножить на время. Так, для элемента АА при разряде до 0,9 В и нагрузке 43 Ом время разряда равно 100 часам, среднее значение напряжения составит примерно 1,25 В, т. е. средний ток разряда будет около 30 мА. Итого энергоемкость при этих условиях приблизительно равна 3000 мА-ч. А вот при нагрузке 3,9 Ом (средний ток — примерно 320 мА) энергоемкость будет всего около 2200 мА-ч.

Ориентировочная удельная энергоемкость щелочных элементов — примерно 300 мА-ч на см 3. Таким образом, энергоемкость батареек типоразмера АА — около 2200–2500 мА-ч, типоразмера ААА — 1000–1200 мА-ч, примерно столько же дают пальчиковые (NiMH) аккумуляторы тех же размеров (о них далее). Для щелочного элемента типоразмера D энергоемкость составит 15–18 А-ч, для типоразмера С — вполовину меньше. Для аналогичных «обычных» батареек (их еще называют солевыми ) — энергоемкость в три раза меньше, чем у щелочных. Для щелочных 9-вольтовых батареек типоразмера «Крона» энергоемкость составляет приблизительно 500–600 мА-ч, зато литиевый аналог (1604LC) имеет вдвое большую энергоемкость и, несмотря на дороговизну, может быть всячески рекомендован для устройств вроде тестеров, которые в основном хранятся без дела.

Однако эти ориентировочные цифры очень приблизительные вследствие того, что энергоемкость элемента сильно зависит от условий разряда, — так, если при разрядном токе 0,1 А считать емкость щелочного элемента за номинальную, то при разряде вдесятеро большим током (1 А) она может упасть в полтора-два, а то и в три раза (в зависимости от типа элемента), а при снижении тока до 1 мА, наоборот, возрастает на 30–50 %. Самый выгодный режим разряда для щелочных элементов — прерывистый: если батарейке периодически давать «отдохнуть», то даже при больших токах ее емкость почти не снижается. Кроме того, многое зависит от допустимого конечного напряжения. Например, если схема допускает минимальное напряжение питания 2,7 В, что при питании от трех щелочных элементов означает конечное напряжение 0,9 В на каждый элемент, то емкость окажется почти на четверть выше, чем при допустимом конечном напряжении 3,3 В (по 1,1 В на элемент). Надо также учитывать, что при снижении температуры до 0 °C энергоемкость щелочных элементов падает на величину от 25 до 50 % (а вот литиевые тот же результат показывают только при -20°).

При этом для щелочных элементов напряжение в начале разряда при постоянной нагрузке очень быстро падает с начальных 1,5–1,6 В до 1,3–1,4 В, а затем снижается уже более плавно (для литиевых падение в процессе разряда меньше, зато в конце они разряжаются до нуля почти скачком). Для батареек типоразмера «Крона» напряжение в конце разряда составляет приблизительно 5–6 В. Внутреннее сопротивление щелочных батареек составляет вначале порядка 0,12-0,17 Ом (для «Кроны» — до 1,7 Ом) и быстро растет по мере разряда.

По этим сведениям вы можете прикинуть необходимый тип питающих элементов для вашей схемы. Следует добавить, что при включении электрохимических элементов последовательно их энергоемкости, выраженные в миллиампер-часах, естественно, не складываются, а остаются теми же (при этом их энергии, выраженные в ватт-часах, суммируются). А параллельное включение электрохимических элементов практикуется только в исключительных случаях, если нет другого выхода. Из-за разброса параметров по технологическим причинам в этом случае они заметную часть времени будут работать друг на друга, особенно в конце разряда. У полностью разряженных щелочных элементов даже возможна переполюсовка выводов (и такой режим опасен для сохранности устройства). Энергоемкость параллельно включенных элементов (естественно, одного типа и из одной партии) будет на четверть-треть меньше суммарной емкости тех же элементов по отдельности. Развязка таких элементов через диоды помогает обезопасить устройство от протечек электролита и деформации элементов при глубоком разряде, но зато вы будете терять драгоценные доли вольта падения на диодах (даже диоды Шоттки «съедают» не менее 0,3–0,4 В). В результате выигрыш окажется не настолько большим, чтобы отказаться от идеи просто поставить элемент побольше размером.

Аккумуляторы

У любых типов аккумуляторов, в отличие от одноразовых элементов, намного выше саморазряд при хранении, а в остальном характеристики современных пальчиковых (NiMH) аккумуляторов практически такие же, как у щелочных одноразовых батареек, разве что номинальное напряжение несколько ниже — 1,3 В против 1,5 В у щелочных. Но давайте немного разберемся, какие вообще бывают аккумуляторы, ибо они существенно различаются по свойствам, и каждый тип оптимален для применения в своей области.

Аккумуляторы встречаются кислотные, щелочные, никель-кадмиевые (NiCd), никель-металлгидридные (NiMH), литий-ионные (Li-ion), и еще попадаются литий-полимерные (Li-pol). Кроме перечисленных, существует еще море разновидностей аккумуляторов (в теории любая электрохимическая реакция обратима и может использоваться как для выработки электрического тока, так и для откладывания его «про запас»), но на рынке доминируют именно эти типы.

Кислотныеаккумуляторы правильнее называть свинцово-кислотными (Lead-Acid, СКА), но других кислотных, кроме как на основе свинца, в быту вы не встретите. Это, вероятно, самая древняя разновидность аккумуляторов — первый работоспособный СКА был создан аж в 1859 году. В начале XX века выяснилось, что именно этот тип аккумуляторов неплохо подходит для того, чтобы крутить стартер автомобиля, и с тех пор их производят десятками миллионов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Ревич читать все книги автора по порядку

Юрий Ревич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная электроника отзывы


Отзывы читателей о книге Занимательная электроника, автор: Юрий Ревич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x