Юрий Ревич - Занимательная электроника

Тут можно читать онлайн Юрий Ревич - Занимательная электроника - бесплатно ознакомительный отрывок. Жанр: sci_radio, издательство БХВ-Петербург, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательная электроника
  • Автор:
  • Жанр:
  • Издательство:
    БХВ-Петербург
  • Год:
    2015
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9775-3479-6
  • Рейтинг:
    2.9/5. Голосов: 921
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Ревич - Занимательная электроника краткое содержание

Занимательная электроника - описание и краткое содержание, автор Юрий Ревич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.

Для широкого круга радиолюбителей

Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок

Занимательная электроника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Ревич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

* * *

Схема на рис. 13.3 приведена скорее в иллюстративных целях, чтобы понять, как в принципе устроены измерители температуры. Можно ли автоматизировать работу такой схемы? Естественно можно, но на практике осуществить это весьма и весьма непросто — схемотехническое решение должно быть очень тщательно продумано. Теперь вы можете оценить, почему прецизионное оборудование стоит так дорого.

Простейшие электронные термометры на батарейке

Как ни странно, но такое распространенное устройство, как бытовой термометр, требует достаточно высокой точности — не хуже 0,1–0,2 °C, хотя бы по той причине, что не очень красиво, когда изобретенный вами прибор показывает +1 градус, в то время как лужи вокруг стойко покрылись льдом. Для обычного диапазона уличных термометров от -50 до +50 °C такая точность эквивалентна относительной погрешности в 0,1 %, что достаточно низкая величина для того, чтобы отнестись к ней со всем возможным уважением, — сравните с погрешностью не самых дешевых серийных мультиметров, лежащей в лучшем случае в пределах 0,5 %.

Легальный путь замять проблему — не демонстрировать десятые градуса, как это делают на уличных табло, тогда допустимая погрешность повышается по крайней мере до 0,5 %. Однако мое убеждение состоит в том, что демонстрировать температуру без десятых градуса все равно, что делать наручные часы без секундной стрелки — вроде бы «по жизни» и не слишком требуется, но как-то… несолидно.

Первое наше детское представление о температуре заключается в магическом числе «36,6», и три цифры эти навсегда переплетаются с самим понятием. Но мы пока не знаем, как делать точные аналого-цифровые схемы, и окончательно освоимся в этой области только в главах 17 и 22 . Поэтому здесь мы рассмотрим пару вариантов простейших реализаций электронного измерителя температуры, не обращая особого внимания на погрешности. Наши конструкции имеют свою изюминку, которая компенсирует нам факт их невысокой точности, — они малопотребляющие и будут работать от одной 9-вольтовой батарейки типа «Крона».

В главах 21 и 22 вы узнаете, как просто реализовать подобные термометры на цифровой платформе Arduino , а пока ради лучшего усвоения основ электроники остановимся на чисто аналоговых методах.

Электронный термометр со стрелочным индикатором…

Схема со стрелочным индикатором приведена на рис. 13.4.

Рис 134 Электронный термометр со стрелочным индикатором В качестве - фото 119

Рис. 13.4. Электронный термометр со стрелочным индикатором

В качестве показывающего устройства здесь используется измерительная головка типа М903 с током полного отклонения 50 мкА. Можно использовать любую другую головку магнитоэлектрической системы, но если ток полного отклонения отличается от указанной величины, то придется пересчитать резистор R7. Головку придется доработать: с нее надо снять переднюю крышку со стеклом и очень аккуратно, чтобы не повредить весьма чувствительную стрелку с очень нежным поворотным механизмом, наклеить поверх имеющейся шкалы новую. Шкалу эту можно изготовить, напечатав ее на плотной бумаге с помощью струйного или лазерного принтера. Крайние деления на шкале должны совпадать с делениями на оригинальной шкале (положение ограничителей хода стрелки не должно совпадать с крайними делениями, у стрелки должен оставаться небольшой свободный ход за пределы шкалы).

Крайнее левое деление будет соответствовать -50°, а крайнее правое +50°, ноль в этом случае должен располагаться ровно по центру шкалы. Так как длина шкалы равна всего нескольким сантиметрам, то нанести разборчивые деления с шагом меньше, чем через 2 градуса, вряд ли получится, и именно этот параметр будет определять максимальную требующуюся точность — снижать погрешность ниже половины деления шкалы, т. е. в данном случае менее 1°, не имеет смысла. Заметим, что нет никаких проблем в том, чтобы отградуировать шкалу на любой другой диапазон, скажем, от -30 до 70° или от 0 до 100°, — для этого нужно будет только подобрать величину резистора R2.

Датчиком температуры здесь служит транзистор в диодном включении. Можно использовать любой маломощный кремниевый n-p-n -транзистор (за исключением «супербета»-разновидностей), единственное, что желательно (но необязательно), чтобы он был в металлическом корпусе. Для изготовления датчика подбирают подходящую по диаметру пластмассовую трубку и заливают в нее эпоксидной смолой транзистор с заранее подпаянными выводами так, чтобы его металлический корпус соприкасался с окружающей средой, — чувствительность и скорость реакции термометра сильно возрастут в сравнении с заделкой его внутрь трубки. Можно использовать и кремниевый диод, но заделывать его придется способом, показанным на рис. 12.9, и прогреваться он будет значительно медленнее.

Ток через датчик будет равен примерно 1 мА, а падение напряжения на нем, естественно, около 0,6 В. Наклон температурной характеристики отрицателен и равен примерно, как мы говорили, 2,3 мВ на один градус, поэтому общее изменение напряжения на датчике составит 230 мВ на диапазон 100 °C. Выходное напряжение ОУ при максимальном сигнале мы хотим сделать как можно больше, чтобы минимизировать как ошибки, связанные с собственным падением напряжения на измерительной головке, так и погрешности схемы вообще. Максимум, что мы можем получить от ОУ в данной схеме — это напряжение несколько ниже напряжения питания, равного 5 В (именно из этого условия подбирается R7), поэтому выбираем коэффициент усиления, приблизительно равный 20 (с округлением в меньшую сторону).

От ОУ здесь не требуется особо высокой точности, зато существенны малое потребление, низкое питающее напряжение и «умение» работать с выходными напряжениями, равными напряжению «земли». Кроме указанного ОР193, подойдут ОР196, МАХ406, МАХ409 (они даже совпадают по цоколевке) и многие другие типы.

Общее потребление схемы определяется здесь в основном потреблением цепи датчика, равным приблизительно 1 мА. Потребление стабилизатора, ОУ и делителя R1-R2 добавят еще примерно 0,5 мА, и суммарное потребление составит около 1,5 мА. Емкость щелочной батарейки «Крона» составляет порядка 600 мА-ч, и наша схема сможет проработать от одного элемента в непрерывном режиме около 17–20 суток. Отметим, что если вместо стабилизатора LM2931 поставить обычный 78L05, то время работы резко уменьшится.

При отладке вместо резисторов R2 и R5 сначала устанавливаются подстроечные резисторы соответствующего номинала (R5 — несколько больше указанного на схеме). Настройку схемы надо начинать с того, что погрузить датчик в среду с температурой 0 °C (тающий снег или мелкоизмельченный лед в равновесии с водой — лучше всего поместить эту смесь в термос и в процессе работы периодически перемешивать) и установить с помощью резистора R2 стрелку головки на 0°. После этого датчик переносится в среду с температурой 40–50° (вот тут пригодится термостат!) и путем изменения R5 устанавливаются соответствующие показания стрелки. Ноль градусов у нас тоже при этом «уйдет», потому указанную процедуру следует повторить несколько раз, перенося датчик из среды с температурой 0° в среду с более высокой температурой и обратно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Ревич читать все книги автора по порядку

Юрий Ревич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная электроника отзывы


Отзывы читателей о книге Занимательная электроника, автор: Юрий Ревич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x