И. Хабловски - Электроника в вопросах и ответах
- Название:Электроника в вопросах и ответах
- Автор:
- Жанр:
- Издательство:Радио и связь
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
И. Хабловски - Электроника в вопросах и ответах краткое содержание
В книге популярно в форме вопросов и ответов объясняются физические основы электроники, электронные компоненты и схемы, особенности их применения. Удачно сочетается широта тематики — от дискретных полупроводниковых приборов до интегральных микросхем с простотой и наглядностью изложения материала.
Для широкого круга читателей.
Электроника в вопросах и ответах - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Индуктивными элементами являются также дроссели и трансформаторы. Дросселями называются катушки, задача которых создать в цепи большое сопротивление для переменного тока, чтобы подавить токи определенных частот. В частности, дроссели применяются в фильтрах источников питания.
Определение результирующего значения индуктивности при последовательном и параллельном соединении катушек пояснено на рис. 2.10.

Рис. 2.10. Определение результирующей индуктивности при последовательном ( а) и параллельном ( б) соединении катушек
Трансформатор как элемент цепи
Трансформатор является индуктивным элементом, состоящим по меньшей мере из двух обмоток, предназначенных для передачи энергии из первичной обмотки во вторичную. В электронных устройствах трансформатор чаще всего служит для повышения или понижения напряжения (в выпрямителях в устройствах питания), а также для согласования нагрузки, подключенной ко вторичной обмотке трансформатора, сопротивлением источника, подключенного к первичной обмотке. Часто трансформаторы используют в качестве элементов связи в усилителях. Мощности используемых в электронных устройствах трансформаторов редко превышают 100 Вт. Отношение числа витков вторичной обмотки n 2 к числу витков первичной n 1называется передаточным отношением рили коэффициентом трансформации К тртрансформатора. Для идеального трансформатора, т. е. трансформатора без потерь, имеем следующие соотношения (рис. 2.11): передаточное отношение р= n 2/ n 1= U 2/ U 1; передаваемая мощность [6] В действительности передаваемая мощность меньше, поскольку в трансформаторе всегда имеются потери.
р = U 2 2 / R 2 = p 2 U 2 1 / R 2.
Согласование сопротивления нагрузки R 2с сопротивлением источника R 1 бывает в том случае, когда сопротивление R 1, «видимое» со стороны источника или пересчитанное на первичную обмотку трансформатора и зависящее от передаточного отношения трансформатора, равно сопротивлению источника
R= R 2/ p 2= R 1

Рис. 2.11. Трансформатор, нагруженный на сопротивление
Какие преобразователи встречаются в электронных устройствах?
Существует много видов преобразователей. Их задача — преобразование энергии одного вида в другой. Электроакустические преобразователи (рис. 2.12) преобразуют акустическую энергию, например речи или музыки, в электрическую или наоборот. В первом случае это микрофоны, во втором — громкоговорители и телефоны. Существуют также преобразователи, обеспечивающие возможность записи звуковых сигналов и изображении, в том числе на магнитной ленте, на пластинке (записывающие головки), а также преобразователи для воспроизведении записанного звука и изображения, на пример в электропроигрывателях, магнитофонах, видеомагнитофонах.
В телевидении используют преобразователи, которые преобразуют в передающей камере (передающие электронно-лучевые трубки) оптическое (световое) изображение и электрический сигнал, а также в приемнике (кинескопы приемные трубки) электрическим сигнал в световое изображение.

Рис. 2.12. Графическое изображение электроакустических преобразователей микрофона ( а), громкоговорителя ( б) и наушников ( в)
На каком принципе работает микрофон?
Это зависит от типа микрофона, но в общем случае можно сказать, что преобразование энергии звука, попадающего на микрофон, в электрическую энергию происходит на принципе использования пружинной мембраны, колеблющейся под влиянием энергии звуковых волн, которая вызывает изменение тока, протекающего в цепи микрофона в такт с воздействующими на эту мембрану волнами.
Динамический микрофон (рис. 2.13) действует на принципе возникновения электродвижущей силы в катушке, перемещающейся в магнитном поле. Катушка соединена с колеблющейся мембраной, а магнитное поле создается постоянным магнитом.

Рис. 2.13. Упрощенная конструкция динамического микрофона:
1 — колеблющаяся мембрана; 2— витки катушки; 3— постоянный магнит
Угольный микрофон (рис. 2.14) применяется, в частности, в телефонных трубках. Колеблющаяся в нем мембрана изменяет электрическое сопротивление угольного порошка, прижимаемого мембраной, что в свою очередь вызывает изменение тока, протекающего через порошок.

Рис. 2.14. Конструкция угольного микрофона:
1— колеблющаяся мембрана; 2— зерна угольного порошка; 3— корпус
Емкостный микрофон работает на принципе использования колеблющейся мембраны в качестве одной из обкладок конденсатора. Колебания мембраны изменяют емкость, что в свою очередь вызывает изменение падения напряжения на резисторе, включенном в цепь микрофона.
Существуют и другие типы микрофонов. Они отличаются конструкцией и параметрами, такими как чувствительность (точнее эффективность), полоса акустических частот, выходное сопротивление источника сигнала, направленные свойства и др.
На каком принципе работает громкоговоритель?
Это зависит от типа громкоговорителя. В случае динамического громкоговорителя (рис. 2.15) электрический ток на акустических частотах, протекающий через обмотку катушки, размещенный в поле постоянного магнита или электромагнита, вызывает колебания этой катушки. Катушка соединена с конусообразной мембраной (чаще всего из бумажной массы). Колебания мембраны вызывают в свою очередь возникновение звуковых волн.

Рис. 2.15. Упрощенная конструкция динамического громкоговорителя:
1 — колеблющаяся мембрана; 2— колеблющаяся катушка; 3— постоянный магнит; 4— подвеска мембраны
Читать дальшеИнтервал:
Закладка: