Пауль Хоровиц - Искусство схемотехники. Том 3 [Изд.4-е]
- Название:Искусство схемотехники. Том 3 [Изд.4-е]
- Автор:
- Жанр:
- Издательство:Мир
- Год:1993
- Город:Москва
- ISBN:5-03-002954-0 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пауль Хоровиц - Искусство схемотехники. Том 3 [Изд.4-е] краткое содержание
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем.
На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения.
Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.
Искусство схемотехники. Том 3 [Изд.4-е] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
3. Рассчитываем сопрягающую частоту, при которой падение усиления на 3 дБ связано с нагружением источника входным импедансом; сравнивая ее с «выходной частотой 3 дБ», вычисленной в п. 1, находим «узкое место» с точки зрения высоких частот.
4. Если необходимо, попробуем улучшить характеристики путем снижения требований к тем параметрам, которые вызывают спад усиления на высоких частотах.
Заметим, что емкость обратной связи С кб влияет на частотные характеристики как выходного, так и входного каскадов, причем в последнем случае она умножается на коэффициент усиления по напряжению (эффект Миллера).
Рассмотрим в соответствии со сказанным эквивалентную схему включения транзистора 2N4124 с параметрами С кб = 2,4 пФ при 2,5 В, h 21э ~= 250 и f T = 300 МГц (рис. 13.6).

Рис. 13.6.
1. Предположим, что Т 3 работает от источника напряжения, его коэффициент усиления по напряжению на низкой частоте равен 100, поскольку r э = 10 Ом при токе коллектора 2,5 мА. Частота —3 дБ, вычисленная по выходной емкости, приблизительно равна 40 МГц (2,4 пФ параллельно 2 пФ шунтируют 1,0 кОм). Заметим, что в этом простом расчете мы не учитываем емкость нагрузки и паразитную емкость проводов.
2. Входное сопротивление, параллельное емкости Миллера (240 пФ) и С вх.э , приблизительно равно 2,5 кОм ( h 21эr э ); емкость С вх.э находится по формуле, приведенной выше, и равна ~ 53 пФ.
3. Верхняя сопрягающая частота, связанная с входной емкостью, при грубом расчете получается равной 280 кГц ( R = 8,2 кОм параллельно 2,5 кОм; С = 240 пФ + 53 пФ) и определяется емкостью эффекта Миллера К UС кб в комбинации с относительно высоким сопротивлением цепи базы. Заметим, что усиление фактически на низкой частоте меньше 100, если считать, что входной сигнал равен сигналу на ненагруженном выходе дифференциального каскада, так как предварительный каскад работает на низкое входное сопротивление; с учетом этого эффекта усиление на низких частотах фактически получается равным 100·2,5/(2,5 + 8,2), т. е. приблизительно 23.
Чрезмерная нагрузка предварительного каскада и низкая сопрягающая частота указывают на то, что схема построена плохо, но рассмотрение ее дает возможность увидеть практические трудности конструирования высокочастотных усилителей. Чтобы улучшить характеристики, надо либо значительно уменьшить полное сопротивление в цепи коллектора, либо использовать иную конфигурацию усилителя. В следующем разделе мы обсудим несколько наиболее популярных схем высокочастотных усилителей, в которых эффекты, связанные с емкостью входа ( f T ) и емкостью обратной связи ( К UС кб , эффект Миллера), уменьшены или полностью отсутствуют.
Как видно из сказанного выше, в высокочастотных усилителях, работающих от источника с умеренно высоким импедансом, доминировать может эффект Миллера. В этих случаях частота f T = 300 МГц и вычисленная для выходного каскада постоянная времени, соответствующая сопрягающей частоте 40 МГц, не влияют на характеристики схемы, которые определяются постоянной времени входной цепи, соответствующей сопрягающей частоте 280 кГц.
Три способа подавления эффекта Миллера .Помимо грубого подхода, заключающегося в том, чтобы просто сильно уменьшить сопротивление в цепи коллектора, имеется несколько интересных конфигураций, в которых обеспечено уменьшение выходного сопротивления каскада — источника сигнала или емкости обратной связи или обоих вместе. На рис. 13.7 приведены эти конфигурации, изображенные в самой простой форме, без цепей смещения и питания (т. е. показаны только цепи, определяющие сигнально-частотные характеристики).

Рис. 13.7. Упрощенные схемы высокочастотных усилителей, а— повторитель плюс усилитель с общим эмиттером; б— усилитель с общим эмиттером плюс усилитель с общей базой (каскодная схема); в— повторитель плюс усилитель с общей базой (дифференциальный усилитель).
В схеме а эмиттерный повторитель снижает выходное сопротивление источника, подключенного ко входу усилителя с общим эмиттером. Это значительно ослабляет отрицательное действие f T и К UС кб . В схеме б , известной как каскодное включение, каскад с общим эмиттером управляет каскадом с общей базой, тем самым сводя на нет эффект Миллера К UС кб (эмиттер Т 4 имеет потенциал, фиксированный напряжением базы; он просто передает ток коллектора Т 3 на R н ). В схеме в повторитель управляет каскадом с общей базой, причем эффект Миллера полностью отсутствует, и в то же время уменьшается выходное сопротивление управляющей цепи; это, по существу, обычная схема дифференциального усилителя с несбалансированными коллекторными резисторами и одним заземленным входом.
Другие приемы.Кроме этих схемных конфигураций имеются два других подхода к проблеме входной емкости и емкости обратной связи, а именно: а) использование одного простого усилителя с заземленной базой, если полное выходное сопротивление источника сигнала достаточно низко, и б) использование «настраиваемых» цепей на входе и выходе усилителя с общим эмиттером (или другой схемы) для «расстройки» эффектов межэлектродных емкостей. Заметим, что такие настраиваемые усилители не бывают широкополосными, а усиливают сигналы только в узкой области частот (что может быть весьма выгодно для некоторых применений). Кроме того, в таком усилителе может быть необходима нейтрализация. Узкополосные настраиваемые усилители будут обсуждаться в последних разделах этой главы. В качестве компромиссного «среднего» решения может использоваться корректирующая «пиковая» индуктивность в несколько микрогенри, включенная последовательно сопротивлению нагрузки коллектора для подавления емкостных эффектов и подъема усиления на частотах, несколько превышающих «естественную» частоту высокочастотного спада (рис. 13.8).

Рис. 13.8.
Чтобы можно было оценить высокочастотные характеристики схем на повторителях и каскадах с заземленной базой, следует построить простые эквивалентные схемы транзисторов по переменному току для этих конфигураций (рис. 13.9).

Рис. 13.9. Эквивалентные схемы, а— каскад с общей базой, б— эмиттерный повторитель.
Читать дальшеИнтервал:
Закладка: