Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]

Тут можно читать онлайн Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е] - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_radio, издательство Мир, год 1993. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Искусство схемотехники. Том 2 [Изд.4-е]
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1993
  • Город:
    Москва
  • ISBN:
    5-03-002338-0 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
  • Рейтинг:
    3.23/5. Голосов: 401
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е] краткое содержание

Искусство схемотехники. Том 2 [Изд.4-е] - описание и краткое содержание, автор Пауль Хоровиц, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах.

Том 2 содержит сведения о прецизионных схемах и малошумящей аппаратуре, о цифровых схемах, о преобразователях информации, мини- и микроЭВМ и микропроцессорах.

Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Искусство схемотехники. Том 2 [Изд.4-е] - читать онлайн бесплатно полную версию (весь текст целиком)

Искусство схемотехники. Том 2 [Изд.4-е] - читать книгу онлайн бесплатно, автор Пауль Хоровиц
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В рассмотренной схеме счетного триггера требование к времени установления будет сохраняться неизменным в течение как минимум 20 нc, предшествующих очередному тактовому перепаду. Может показаться, что при этом нарушается требование к времени удержания, но это не так. Минимальное время распространения сигнала с тактового входа на выход составляет 10 нc, и D-триггер, включенный в счетном режиме, будет иметь неизменное состояние D-входа в течение по меньшей мере 10 нc. Большинство современных устройств вообще не представляют требований ко времени удержания (имеют t уд = 0). Если сигнал на D-входе изменяется на интервале времени удержания, то может возникнуть любопытный эффект, носящий название «метастабильное состояние», при котором триггер не может определить, в какое состояние он должен перейти. Об этом явлении мы вскоре еще упомянем.

Деление на число, большее чем 2.С помощью каскадного соединения счетных триггеров (выход Q каждого предыдущего триггера подключен к тактическому входу последующего) легко получить «делитель на 2 n », или двоичный счетчик. На рис. 8.56 показана схема четырехразрядного асинхронного счетчика и даны его временные диаграммы.

Рис 856 4разрядный счетчик Заметим здесь что если выход Q каждого - фото 179

Рис. 8.56. 4-разрядный счетчик.

Заметим здесь, что если выход Q каждого триггера непосредственно действует на тактовый вход следующего, срабатывание триггеров должно происходить по спаду (заднему фронту) сигнала на тактовом входе (показано кружком инверсии). Эта схема представляет собой счетчик-делитель на 16: на выходе последнего триггера формируются прямоугольные импульсы, следующие с частотой, равной 1/16 частоты входного тактового сигнала. Схема называется счетчиком, поскольку информация, присутствующая на четырех входах Q , может рассматриваться как 4-разрядное двоичное число, которое изменяется от 0 до 15, увеличиваясь на единицу с каждым входным импульсом. Этот факт отражает временная диаграмма на рис. 8.56, б , на которой СЗР означает «старший значащий разряд», МЗР-«младший значащий разряд», а изогнутые стрелки, облегчающие понимание, указывают, какими перепадами вызываются изменения сигналов. Этот счетчик, как вы увидите в разд. 8.25 , выполняет настолько важную функцию, что выпускается в виде большого числа модификаций, выполненных в виде однокристальных микросхем, включая такие форматы счета, как 4-разрядный, двоично-десятичный и многоцифровой. Соединяя эти счетчики каскадно и воспроизводя их содержимое с помощью цифрового индикатора (например, светодиодного) можно легко построить схему подсчета каких-либо событий. Если разрешить прохождение импульсов на вход счетчика в течение ровно 1 с, то получится счетчик частоты, который будет воспроизводить значение частоты путем подсчета числа периодов в секунду. В разд. 15.10 приводятся схемы этого простого, но очень полезного устройства. Промышленностью выпускаются однокристальные счетчики частоты, в состав которых входят дополнительно генератор, схемы управления и вывода на индикацию. Триггер такого устройства показан на рис. 8.71.

На практике простейшая схема каскадирования счетчиков посредством соединения каждого выхода Q со следующим тактовым входом имеет некоторые интересные проблемы, связанные с покаскадной задержкой распространения сигнала по цепочке триггеров. По этой причине лучше использовать схему, в которой один и тот же тактовый сигнал подается одновременно на все входы. В следующем разделе мы будем рассматривать эти синхронные тактируемые системы.

8.18. Последовательностная логика — объединение памяти и вентилей

После того как мы изучили свойства триггеров, посмотрим, что можно получить, если объединить их с рассмотренной ранее комбинационной (вентильной) логикой. Составленные из вентилей и триггеров схемы, представляют собой наиболее общую форму цифровой логики.

Синхронные тактируемые системы.Мы уже упомянули в предыдущем разделе, что последовательностные логические схемы, в которых для управления всеми триггерами используется общий источник тактовых импульсов, имеют ряд преимуществ. В таких синхронных системах все действия происходят сразу же после возникновения тактового импульса и определяются тем состоянием, которое имеет место непосредственно перед его возникновением. Общая структура подобной системы показана на рис. 8.57.

Рис 857 Классическая последовательностная схема регистры памяти и - фото 180

Рис. 8.57. Классическая последовательностная схема: регистры памяти и комбинационная логика. Эту схему можно легко реализовать с использованием однокристальных регистровых ПМЛ (см. разд. 8.27).

Все триггеры объединены в один общий регистр, представляющий собой не что иное, как набор D-триггеров, у которых тактовые входы соединены вместе, а индивидуальные D-входы и выходы Q выведены вовне. Каждый тактовый импульс вызывает передачу уровней, присутствующих на D-входах, на соответствующие выходы Q . Блок, состоящий из вентилей, анализирует состояние выходов регистра и внешних входов, вырабатывает новую комбинацию сигнала для D-входов регистра и выходные логические уровни.

Эта с виду простая схема обладает очень большими возможностями. Рассмотрим пример.

Пример: деление на 3. Попробуем построить схему синхронного делителя на 3 с помощью двух D-триггеров, тактируемых входным сигналом. В этом случае D 1 и D 2 будут входами регистра, Q 1 и Q 2 — eгo выходами, общая тактовая линия будет представлять главный тактовый вход (рис. 8.58).

Рис 858 1 Выберем три состояния Q 1 Q 2 0 0 0 1 1 0 0 0 т е - фото 181

Рис. 8.58.

1. Выберем три состояния:

Q 1 Q 2

______

0 0

0 1

1 0

0 0 (т. е. первое состояние)

2. Определим, что должно быть на выходах комбинационной схемы, для того чтобы получить последовательность этих состояний, т. е. что должно поступать на D-входы, для того чтобы получить требуемые состояния на выходах:

3 Построим вентильную схему которая с помощью имеющихся выходов позволяла - фото 182

3. Построим вентильную схему, которая, с помощью имеющихся выходов, позволяла бы получить требуемые состояния на выходах. В общем случае можно использовать карту Карно, но для данного простого примера можно сразу увидеть, что D 1 = Q 2, D 2 = ( Q 1 + Q 2 ) ' . Этому соответствует схема на рис. 8.59.

Рис 859 Схема деления на 3 Легко проверить что эта схема работает так - фото 183

Рис. 8.59. Схема деления на 3.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Пауль Хоровиц читать все книги автора по порядку

Пауль Хоровиц - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Искусство схемотехники. Том 2 [Изд.4-е] отзывы


Отзывы читателей о книге Искусство схемотехники. Том 2 [Изд.4-е], автор: Пауль Хоровиц. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x