М. Бабаев - Гидравлика

Тут можно читать онлайн М. Бабаев - Гидравлика - бесплатно ознакомительный отрывок. Жанр: sci_tech, издательство Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e, год 2008. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Гидравлика
  • Автор:
  • Жанр:
  • Издательство:
    Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e
  • Год:
    2008
  • Город:
    Москва
  • ISBN:
    978-5-699-24848-3
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

М. Бабаев - Гидравлика краткое содержание

Гидравлика - описание и краткое содержание, автор М. Бабаев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Введите сюда краткую аннотацию

Гидравлика - читать онлайн бесплатно ознакомительный отрывок

Гидравлика - читать книгу онлайн бесплатно (ознакомительный отрывок), автор М. Бабаев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Уравнение Эйлера было получено российским ученым Л Эйлером в 1755 г и - фото 58

Уравнение Эйлера было получено российским ученым Л. Эйлером в 1755 г., и преобразовано в вид (2) опять же российским ученым И. С. Громекой в 1881 г

Уравнение Громеко (под воздействием массовых сил на жидкость):

Поскольку dП Fxdx Fydy Fzdz 4 то для компонентов Fy Fz можно - фото 59

Поскольку

– dП = Fxdx + Fydy + Fzdz, (4)

то для компонентов Fy, Fz можно вывести те же выражения, что и для Fx, и, подставив это в (2), прийти к (3).

25. Уравнение Бернулли

Уравнение Громеки подходит для описания движения жидкости, если компоненты функции движения содержат какуююто вихревую величину. Например, эта вихревая величина содержится в компонентах ωx, ωy,ωz угловой скорости w.

Условием того, что движение является установившимся, является отсутствие ускорения, то есть условие равенства нулю частных производных от всех компонентов скорости:

Гидравлика - изображение 60

Если теперь сложить

Гидравлика - изображение 61

то получим

картинка 62

Если проецировать перемещение на бесконечно малую величину dl на координатные оси, то получим:

dx = Uxdt; dy = Uy dt; dz = Uzdt. (3)

Теперь помножим каждое уравнение (3) соответственно на dx, dy, dz, и сложим их:

Предположив что правая часть равна нулю а это возможно если вторая или - фото 63

Предположив, что правая часть равна нулю, а это возможно, если вторая или третья строки равны нулю, получим:

Нами получено уравнение Бернулли 26 Анализ уравнения Бернулли это уравнение - фото 64

Нами получено уравнение Бернулли

26. Анализ уравнения Бернулли

это уравнение есть не что иное как уравнение линии тока при установившемся - фото 65

это уравнение есть не что иное, как уравнение линии тока при установившемся движении.

Отсюда следуют выводы:

1) если движение установившееся, то первая и третья строки в уравнении Бернулли пропорциональны.

2) пропорциональны строки 1 и 2, т. е.

Уравнение 2 является уравнением вихревой линии Выводы из 2 аналогичны - фото 66

Уравнение (2) является уравнением вихревой линии. Выводы из (2) аналогичны выводам из (1), только линии тока заменяют вихревые линии. Одним словом, в этом случае условие (2) выполняется для вихревых линий;

3) пропорциональны соответствующие члены строк 2 и 3, т. е.

где а некоторая постоянная величина если подставить 3 в 2 то получим - фото 67

где а – некоторая постоянная величина; если подставить (3) в (2), то получим уравнение линий тока (1), поскольку из (3) следует:

ω x= aUx; ω y= aUy; ω z= aUz. (4)

Здесь следует интересный вывод о том, что векторы линейной скорости и угловой скорости сонаправлены, то есть параллельны.

В более широком понимании надо представить себе следующее: так как рассматриваемое движение установившееся, то получается, что частицы жидкости движутся по спирали и их траектории по спирали образуют линии тока. Следовательно, линии тока и траектории частиц – одно и то же. Движение такого рода называют винтовым.

4) вторая строка определителя (точнее, члены второй строки) равна нулю, т. е.

ω x= ω y= ω z= 0. (5)

Но отсутствие угловой скорости равносильно отсутствию вихревости движения.

5) пусть строка 3 равна нулю, т. е.

Ux = Uy = Uz = 0.

Но это, как нам уже известно, условие равновесия жидкости.

Анализ уравнения Бернулли завершен.

27. Примеры прикладного применения уравнения Бернулли

Во всех случаях требуется определить математическую формулу потенциальной функции, которая входит в уравнение Бернулли: но эта функция имеет разные формулы в разных ситуациях. Ее вид зависит от того, какие массовые силы действуют на рассматриваемую жидкость. Поэтому рассмотрим две ситуации.

Одна массовая сила

В этом случае подразумевается сила тяжести, которая выступает в качестве единственной массовой силы. Очевидно, что в этом случае ось Z и плотность распределения Fz силы Ппротивонаправлены, следовательно,

Fx = Fy = 0; Fz = —g.

Поскольку – dП = Fxdx + Fydy + Fzdz, то – dП = Fzdz,окончательно dП = —gdz.

Интегрируем полученное выражение:

П = —gz + C, (1)

где С – некоторая постоянная.

Подставив (1) в уравнение Бернулли, имеем выражение для случая воздействия на жидкость только одной массовой силы:

Если разделить уравнение 2 на g поскольку оно постоянное то Мы получили - фото 68

Если разделить уравнение (2) на g (поскольку оно постоянное), то

Мы получили одну из самых часто применяемых в решении гидравлических задач - фото 69

Мы получили одну из самых часто применяемых в решении гидравлических задач формул, поэтому следует ее запомнить особенно хорошо.

Если требуется определить расположение частицы в двух разных положениях, то выполняется соотношение для координат Z 1и Z 2, характеризующие эти положения

Можно переписать 4 в другой форме 28 Случаи когда массовых сил несколько - фото 70

Можно переписать (4) в другой форме

28 Случаи когда массовых сил несколько В этом случае усложним задачу Пусть - фото 71

28. Случаи, когда массовых сил несколько

В этом случае усложним задачу. Пусть на частицы жидкости действуют следующие силы: сила тяжести; центробежная сила инерции (переносит движение от центра); кориолисовая сила инерции, которая заставляет частицы вращаться вокруг оси Z с одновременным поступательным движением.

В этом случае мы получили возможность представить себе винтовое движение. Вращение происходит с угловой скоростью w. Нужно представить себе криволинейный участок некоторого потока жидкости, на этом участке поток как бы вращается вокруг некоторой оси с угловой скоростью.

Частным случаем такого потока можно считать гидравлическую струю. Вот и рассмотрим элементарную струйку жидкости и применим в отношении к ней уравнение Бернулли. Для этого поместим элементарную гидравлическую струю в координатную систему XYZ таким образом, чтобы плоскость YOX вращалась вокруг оси O Z.

Будем считать, что U – местная скорость жидкости во вращающейся плоскости YOX. Пусть

Fx 1= Fy 1= 0; Fz 1=—g —

составляющие силы тяжести (то есть ее проекции на оси координат), отнесенные к единичной массе жидкости. К этой же массе приложена вторая сила – сила инерции ω 2r, где r – расстояние от частицы до оси вращения ее компоненты.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


М. Бабаев читать все книги автора по порядку

М. Бабаев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Гидравлика отзывы


Отзывы читателей о книге Гидравлика, автор: М. Бабаев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x