Нгуэн-Ким Май Тхи - Комично, как все химично! [Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется]
- Название:Комично, как все химично! [Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется]
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2021
- Город:Москва
- ISBN:978-5-04-115446-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Нгуэн-Ким Май Тхи - Комично, как все химично! [Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется] краткое содержание
Комично, как все химично! [Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Если температура – не что иное, как мера движения частиц (вспоминаем главу 1), то выражение «так холодно, как только возможно» равнозначно выражению «медленно, как только возможно». Поэтому абсолютный ноль – 0 градусов по Кельвину или минус 273,15 по Цельсию – можно представить себе как точку абсолютной неподвижности. Холоднее полной неподвижностиничего не бывает, поэтому у температур есть нижняя физическая граница. Однако третий закон термодинамикина практике не допускает достижения абсолютного нуля. Впрочем, космос к нему близок: там 2,7 градуса по Кельвину, или, соответственно, минус 270,45 по Цельсию. Да как же там можно, простите, не замерзнуть?
Это снова отсылает нас к кофе из главы 1. Охлаждение происходит главным образом посредством теплопередачи, а она, в свою очередь, – в результате столкновений молекул. Чем больше материи между собой контактирует, то есть чем чаще частицы могут сталкиваться, тем лучше передается тепло. Поэтому, например, ведерко ледяной воды для охлаждения напитка будет существенно эффективнее ведерка, наполненного кубиками льда (заодно и совет вам на случай нежданного визита гостей, когда надо будет быстро охладить напитки). Дело в том, что между кубиками льда есть воздух, а в нем по сравнению с водой частиц меньше, что ведет к меньшему числу столкновений. Следовательно, медленнее всего бутылки будут охлаждаться в холодильнике, поскольку воздух – никудышний проводник тепла.

А еще никудышнее – космический вакуум, ведь там материи нет вообще. Поэтому нет и молекул, которым я, будучи теплым телом, могла бы передать свое тепло. Разве что тепловое излучение будет меня охлаждать, только медленно. Значит, несмотря на температуры, близкие к абсолютному нулю, в космосе человек не так уж быстро замерзнет.
Может, он взорвется? Мысль вот какая: когда давление воздуха извне отсутствует и внутреннему давлению тела ничего не противостоит, человек взрывается. На YouTube есть милые видео, в которых сладости типа зефира в шоколаде ставят под вакуумный колпак, откуда медленно вытягивают воздух. Шоколадный слой лопается, и белая начинка фонтанирует во все стороны. Хорошо, что мы не зефирины в шоколаде. Наши кожа и ткани достаточно прочные, чтобы не дать нам распасться в вакууме.
Но не обязательно сразу взрыв. Может быть не столь трагично, но все же очень неприятно. Даже на высотах земной атмосферы, начиная где-то с 18–19 километров над уровнем моря, наш организм начинает бурлить, если можно так выразиться. Это называется эбуллизм [15] В русском языке термин употребляется редко. Намного чаще это состояние называют декомпрессионной, или кессонной, болезнью. – Прим. науч. ред.
(от латинского ebullire , что значит «бить», как вода в ключе). Звучит игриво (возникает ассоциация с игристым вином или с газировкой), но симптомы не из приятных: вода во рту и глазах начинает закипать, нарушаются кровоснабжение и дыхание, из-за блокировки артерий мозг не получает достаточного количества кислорода, могут возникать отеки легких и легочные кровотечения. Явно потянет назад – туда, где на голове «Фольксваген Поло», наполненный молекулами воздуха.
Только почему наш организм начинает бурлить? Бурлить – значит закипать: жидкость превращается в газ.
В принципе, есть две возможности довести жидкость до кипения. Во-первых, разогреть ее. Об этом мы уже говорили в главе 1: при кипячении воды мы усиливаем движение ее молекул. В какой-то момент их потребность двигаться вырастает до такой степени, что они больше не могут или не хотят держаться друг за друга и превращаются в пар. Во-вторых, уменьшить давление. Если быть точными, факт, что вода закипает при 100 °C, действителен только при атмосферном давлении на высоте уровня моря. На вершине Эвереста – на высоте 8848 метров – из-за низкого давления воздуха вода закипит уже при 69 °C. С одной стороны, вода жидкая потому, что ее молекулы держатся друг за друга, а с другой – еще и потому, что на них воздействует давление воздуха. Вспомните: молекулы воздуха всей своей тяжестью давят на нас и точно так же давят на молекулы воды в кастрюле. Предположим, мы поднялись на Эверест, прихватив с собой кастрюлю. Воздух там разреженный, и с водой сталкивается меньшее количество его молекул. Чем меньше атмосферное давление, тем проще молекулам воды покидать кастрюлю и обращаться в пар. А на высоте 18–19 километров воздух такой разреженный, что вода испаряется уже при температуре тела. В космосе, где атмосферное давление практически нулевое, испарение вообще происходит легко.
Кроме того, воздух в легких очень сильно расширится. На объем газа, как и на агрегатное состояние, можно повлиять двумя путями. Во-первых, температурой: чем ниже температура, тем меньший объем занимает газ; чем температура выше, тем больший объем ему нужен. Для ясности можете проделать опыт: возьмите бутылку и замените крышку воздушным шариком. Пока воздух не может выходить из бутылки, вы будете наблюдать, как шарик важно надувается, если нагревать бутылку на водяной бане, к примеру. Снова охладите бутылку в холодной воде – шарик сдуется.
Во-вторых, я могу воздействовать на объем давлением: когда я надуваю шарик, молекулы воздуха внутри наталкиваются на его оболочку. Размер шарика зависит не только от того, сколько я надую туда воздуха, но и от атмосферного давления, которое противодействует ему снаружи. Если я теперь уменьшу наружное давление, шарик растянется сильнее. Следовательно, в космосе шарик, почти полностью состоящий из газа, действительно взорвался бы.

Если бы меня ненароком выбросило в космос, вероятно, я инстинктивно задержала бы дыхание, из-за чего воздух в моих легких быстро расширился, и они бы взорвались. Так что в этом случае лучше быстро выдохнуть – хотя в общем-то без разницы: человек там все равно погибнет.
Даже если мы не взорвемся в космическом вакууме, как зефир в шоколаде, и кожа и ткани не повредятся, мы по-любому долго не протянем. В 1960-е годы астронавту Джиму Лебланку довелось отделаться испугом, когда во время испытаний в вакуумной камере его скафандр разгерметизировался. Последнее, что он запомнил, прежде чем потерял сознание, – щекочущее ощущение во рту от вскипевшей слюны. К счастью, его вовремя вернули в условия нормального давления, и все обошлось без необратимых последствий.
Итак, в космосе жизнь кипит и пенится, но, вероятнее всего, мы умрем, не дождавшись этого, – впрочем, довольно непримечательным образом: от недостатка кислорода. Хорошо, что мозг через несколько секунд пребывания без кислорода отправит нас в бессознательное состояние, поэтому всю бедственность положения мы уже не постигнем. Поэтому я согласна с критикой в адрес «Звездных войн»: действительно, крайне нереалистично, что Лея смогла применить Силу в безвоздушном пространстве, ведь это требует такой большой концентрации…
Читать дальшеИнтервал:
Закладка: