Джеймс Глик - Хаос. Создание новой науки
- Название:Хаос. Создание новой науки
- Автор:
- Жанр:
- Издательство:АСТ: CORPUS
- Год:2021
- Город:Москва
- ISBN:978-5-17-116057-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джеймс Глик - Хаос. Создание новой науки краткое содержание
Хаос. Создание новой науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
16
Примерно 24 градуса по Цельсию.
17
Современное описание проблемы использования уравнений в погодном моделировании, изложенное Лоренцем, см.: «Large-Scale Motions of the Atmosphere: Circulation» //Advances In Earth Science / Ed. by R M. Hurley. Cambridge, Mass.: The M. I. T. Press, P. 95-Одно из самых ранних и вдохновляющих исследований этой проблемы: Richardson L F. Weather Prediction by Numerical Process. Cambridge: Cambridge University Press, 1922.
18
Лоренц. Как в его мышлении сочетались математические и метеорологические основания, см.: «Irregularity: A Fundamental Property of the Atmosphere», Crafoord Prize Lecture presented at the Royal Swedish Academy of Sciences, Stockholm, Sept. 28, 1983 // Tellus. Vol. 36A. P. 98–110.
19
Уже восьми: в 2006 году Плутон переведен в статус «карликовых планет».
20
Laplace R S. de. A Philosophical Essay on Probabilities. New York: Dover, 1951.
21
Уинфри.
22
Лоренц.
23
«On the Prevalence». P. 55.
24
Из всех классических физиков и математиков, которые размышляли над динамическими системами, лучше всех возможности хаоса осознавал Жюль Анри Пуанкаре. В работе «Наука и метод» он писал: «Таким образом, совершенно ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которого мы не можем предусмотреть, и тогда мы говорим, что это явление представляет собой результат случая. Если бы мы знали точно законы природы и состояние Вселенной в начальный момент, то мы могли бы точно предсказать состояние Вселенной в любой последующий момент. Но даже и в том случае, если бы законы природы не представляли собой никакой тайны, мы могли бы знать первоначальное состояние только приближенно. Если это нам позволяет предвидеть дальнейшее ее состояние с тем же приближением, то это все, что нам нужно. Мы говорим, что явление было предвидено, что оно управляется законами. Но дело не всегда обстоит так; иногда небольшая разница в первоначальном состоянии вызывает большое различие в окончательном явлении. Небольшая погрешность в первом вызвала бы огромную ошибку в последнем. Предсказание становится невозможным…» (Пуанкаре А. О науке. М.: Наука, – Прим. ред. ) С переходом из XIX века в XX его предупреждение было забыто; единственным математиком в США, который продолжал следовать заветам Пуанкаре в 1920-1930-е годы, был Джордж Биркгоф. Так случилось, что он недолгое время был наставником Эдварда Лоренца в Массачусетском технологическом институте.
25
Лоренц; а также см.: «On the Prevalence». P. 56.
26
Лоренц.
27
Вудс, Шнейдер; см. также большой обзор экспертных мнений того времени: «Weather Scientists Optimistic That New Findings Are Near» // The New York Times. 9 September. P. 1.
28
Дайсон.
29
Боннер, Бенгтссон, Вудс, Лейт.
30
Medawar R В. «Expectation and Prediction» // Pluto's Republic. Oxford: Oxford University Press, R 301–304.
31
Изначально Лоренц использовал для описания эффекта образ чайки, а тот образ, который используется сейчас, по-видимому, позаимствован из его работы «Predictability: Does the Flap of a Butterfly's Wings in Brazil Set Off a Tornado in Texas?» и связан с выступлением на ежегодном собрании Американской ассоциации содействия развитию науки в Вашингтоне 29 декабря 1979 года.
32
Йорк.
33
Лоренц, Уайт.
34
«The Mechanics of Vacillation».
35
Перевод С. Я. Маршака.
36
Джордж Херберт; в этом контексте цит. по: Wiener N. «Nonlinear Prediction and Dynamics» // Collected Works with Commentaries / Ed. by R Masani. Cambridge, Mass.: The M. I. T. Press, R 3:Винер не был согласен с Лоренцем как минимум в признании наличия «самостоятельных колебаний незначительных деталей на погодной карте». Он отмечал: «Торнадо – в высшей степени локальный феномен, и его точный путь могут определять мелочи, не влияющие глобально больше ни на что».
37
Тут имеется в виду следующее. Пусть есть линейное уравнение типа ẍ+x= = a ( t ) + b ( t ) + c ( t ). Это уравнение описывает динамику колебательного процесса, и здесь a ( t ), b ( t )и c ( t ) – слагаемые, отвечающие за различные внешние воздействия. например, можно представить себе ребенка, качающегося на качелях в ветреную погоду. тогда a ( t )будет обозначать усилия самого ребенка, b ( t ) – усилия его родителей, помогающих раскачиваться, и c ( t ) – силу ветра. можно разобрать исходное уравнение на кусочки, а именно – решить три отдельных уравнения, каждое из которых учитывает только один из трех эффектов (то есть х + х = a ( t ), x + x = b ( t ) nx+x = c ( t )). Если теперь сложить решения этих уравнений, результат будет решением исходного уравнения. Эта аддитивность и является как раз следствием линейности – нелинейные уравнения таким свойством не обладают.
38
Neumann J. von. «Recent Theories of Turbulence» (1949) // Collected Works / Ed. by A. H. Taub. Oxford: Pergamon Press, R 6:437.
39
«The predictability of hydrodynamic flow» // Transactions of the New York Academy of Sciences. Vol. 11:25:R 409–432.
40
Ibid. R 410.
41
Этот набор из семи уравнений для описания конвекции был разработан Барри Сольцменом из Йельского университета, с которым Лоренц был знаком. Обычно уравнения Сольцмена описывают периодическое поведение, но, как заметил Лоренц, имелось одно исключение, при котором жидкость «отказывалась приходить в состояние покоя». Тогда Лоренц понял, что значение четырех из уравнений в ситуации хаоса сводится к нулю, поэтому их можно не учитывать. Saltzman В. «Finite Amplitude Convection as an Initial Value Problem» // Journal of the Atmospheric Sciences. Vol. P. 329.
42
Появление конвективных валов в жидкости из уравнений Навье – Стокса, непрерывности и теплопроводности подробно описано в монографии Ланда П. С. Нелинейные колебания и волны . М: Либроком, 2010.
43
Подобную модель можно найти в статье: Cook A. E., Roberts P. H. «The Rikitake twodisc dynamo system» // Mathematical Proceedings of the Cambridge Philosophical Society . Vol. P. 547–569.
44
Малкус; хаотичность магнитного поля Земли до сих пор остается горячо обсуждаемой темой, и некоторые ученые продолжают искать объяснения этому явлению, в том числе не исключая возможности внешнего воздействия, например потоков воздуха, идущих от огромных метеоритов. Одно из первых предположений, что изменения обусловлены хаосом, встроенным в саму систему, см.: Robbins К. A. «A moment equation description of magnetic reversals in the earth» // Proceedings of the National Academy of Science. Vol. P. 4297–4301.
45
Малкус.
46
Подобное вращение можно наблюдать на видео: www.youtube.com/watch?v= Gu50alrmzNA .
47
Эта классическая модель, обычно называемая системой Лоренца, выглядит так:
dx/dt = 10 (у −х)
dy/dt = −xz + 28х −у
dz/dt = ху −(8/3) z
С момента ее появления в «Deterministic Nonperiodic Flow» система Лоренца много исследуется; см., например, авторитетную техническую работу: Sparrow C. The Lorenz Equations, Bifurcations, Chaos, and Strange Attractors. Springer-Verlag, 27 См. русский перевод: Лоренц Э. «Детерминированное непериодическое течение» // Странные аттракторы . М.: Мир, С. 88. ( Прим. науч. ред .)
Читать дальшеИнтервал:
Закладка: