Чарльз Петцольд - Код. Тайный язык информатики
- Название:Код. Тайный язык информатики
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2019
- Город:Москва
- ISBN:978-5-00117-545-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Чарльз Петцольд - Код. Тайный язык информатики краткое содержание
Код. Тайный язык информатики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

На этом пульте есть два ряда по восемь переключателей. Этот набор переключателей — устройство ввода, которое мы будем использовать для ввода двух 8-битных значений. В этом устройстве выключенный переключатель (положение вниз) соответствует значению 0, а включенный (положение вверх) — 1, как в случае с настенными переключателями в вашем доме. Устройство вывода в нижней части пульта — ряд из девяти лампочек, которые отобразят результат сложения. Негорящая лампочка соответствует значению 0, горящая — 1. Нам требуется девять лампочек, поскольку сумма двух 8-битных чисел может быть 9-битным числом.
В остальном сумматор будет состоять из логических вентилей, соединенных различными способами. Переключатели будут активировать реле в логических вентилях, которые, в свою очередь, будут зажигать нужные лампочки. Например, если мы хотим сложить числа 0110 0101 и 1011 0110 (из предыдущего примера), включаем соответствующие переключатели.
Загоревшиеся лампочки показывают результат: 1 0001 1011. По крайней мере, мы на это надеемся. Мы ведь еще не собрали устройство!
В предыдущей главе я упомянул, что в этой книге буду использовать множество реле. Для 8-битного сумматора, который мы создаем, требуется не менее 144 реле — по восемнадцать для каждой из восьми пар битов, которые складываем. Если бы я показал готовую схему, вы бы наверняка испугались. Никому не под силу разобраться в схеме, состоящей из ста сорока четырех хитро соединенных реле. Вместо этого мы будем решать такую задачу поэтапно, используя логические вентили.
Возможно, вы сразу заметили связь между логическими вентилями и сложением двоичных чисел, когда увидели таблицу для разряда переноса, который возникает в результате сложения двух однобитных чисел.
Вероятно, вы узнали в ней результат работы вентиля И.
Таким образом, вентиль И вычисляет значение разряда переноса при сложении двух двоичных цифр.
Ага! Мы определенно делаем успехи. Наш следующий шаг, похоже, заключается в том, чтобы убедить некоторые реле вести себя так:
Это вторая часть задачи при сложении пары двоичных цифр. Вычислить значение разряда суммы оказывается не так просто, как значение разряда переноса, но мы справимся и с этой сложностью.
Первое, что нужно понять, — это то, что результат работы вентиля ИЛИ близок к тому, что нам нужно, за исключением значения в правом нижнем углу.
Результат работы вентиля И-НЕ также близок к тому, что нам требуется, за исключением значения в верхнем левом углу:
Итак, давайте подключим вентили ИЛИ и И-НЕ к одним и тем же входам.

В следующей таблице представлены выходные сигналы вентилей ИЛИ и И-НЕ и их сравнение с тем, что мы хотим получить от сумматора.

Заметьте, что мы хотим получить значение 1, только если выходные сигналы обоих вентилей ИЛИ и И-НЕ равны 1. Это говорит о том, что эти два выходных сигнала могут являться входными сигналами для вентиля И.

То, что нужно.
Обратите внимание: во всей этой схеме по-прежнему есть только два входа и один выход. Два входа относятся к обоим вентилям ИЛИ и И-НЕ. Выходные сигналы вентилей ИЛИ и И-НЕ подаются на вход вентиля И, и это дает именно тот результат, к которому мы стремимся.

На самом деле у этой схемы есть название: вентиль исключающее ИЛИ (Искл-ИЛИ, оно же — сложение по модулю 2). Она называется так потому, что выход равен 1, если вход A равен 1 или вход B равен 1, но не оба одновременно. Вместо того чтобы рисовать вентили ИЛИ, И-НЕ и И, мы можем использовать обозначение, которым инженеры-электрики показывают вентиль Искл-ИЛИ.

Это обозначение очень похоже на обозначение вентиля ИЛИ, но имеет дополнительную кривую линию со стороны входа.

Вентиль Искл-ИЛИ — это последний логический элемент, который будет подробно описан в этой книге. Иногда в электротехнике используется шестой вентиль, называющийся вентилем совпадения или эквивалентности , поскольку выход равен 1 только при одинаковых сигналах на входе. Вентиль совпадения на выходе действует противоположно вентилю Искл-ИЛИ, поэтому его обозначение аналогично обозначению вентиля Искл-ИЛИ, но дополнено кружком со стороны выхода [17].
Давайте повторим все, что уже знаем. При сложении двух двоичных чисел получается бит суммы и бит переноса.

Для получения этих результатов можно использовать следующие два вентиля.

Разряд суммы двух двоичных чисел задается выходом вентиля Искл-ИЛИ, а разряд переноса — выходом вентиля И, поэтому можно комбинировать вентили И и Искл-ИЛИ для сложения двух двоичных цифр A и B.

Вместо многократного перерисовывания вентилей И и Искл-ИЛИ можно просто нарисовать схему, подобную следующей.

Существует причина, по которой эта схема называется полусумматором . Разумеется, она складывает две двоичные цифры и выдает бит суммы и бит переноса. Однако длина подавляющего большинства двоичных чисел превышает один бит. То, что полусумматор не может сделать, так это прибавить возможный бит переноса, получившийся в результате предыдущей операции сложения. Представьте, что складываем два двоичных числа.

Мы можем использовать полусумматор только для сложения цифр в правом крайнем столбце: 1 плюс 1 равно 0, 1 переносится. В случае со вторым столбцом справа нам, по сути, нужно сложить три двоичные цифры из-за переноса. И это касается всех остальных столбцов. Каждая последующая операция сложения двух двоичных цифр может включать бит переноса из предыдущего столбца.
Читать дальшеИнтервал:
Закладка: