Чарльз Петцольд - Код. Тайный язык информатики
- Название:Код. Тайный язык информатики
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2019
- Город:Москва
- ISBN:978-5-00117-545-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Чарльз Петцольд - Код. Тайный язык информатики краткое содержание
Код. Тайный язык информатики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
если e равно 255, а f не равно 0, то значение считается «не числом» и обозначается аббревиатурой NaN (Not a Number — «не число»); NaN может указывать на неизвестное число или на результат недопустимой математической операции.
Наименьшее нормализованное положительное или отрицательное двоичное число, которое можно представить с одинарной точностью в формате с плавающей точкой, следующее:
1,00000000000000000000000ДВА × 2–126.
В этом числе после двоичного разделителя следуют 23 двоичных нуля. Наибольшее нормализованное положительное или отрицательное двоичное число, которое можно представить с одинарной точностью в формате с плавающей точкой, следующее:
1,11111111111111111111111ДВА × 2127.
В десятичной системе счисления эти два числа приблизительно равны 1,175494351 × 10–38 и 3,402823466 × 1038. Именно этими числами ограничивается диапазон чисел с плавающей точкой одинарной точности.
Вероятно, вы помните, что десять двоичных цифр примерно эквивалентны трем десятичным цифрам. Под этим подразумеваю, что двоичное число, состоящее из десяти единиц, которое соответствует числу 3FFh в шестнадцатеричном формате и 1023 в десятичном, приблизительно равно числу из трех девяток, то есть 999. Таким образом:
210 ≈ 103.
Из этого соотношения следует, что 24-битное двоичное число одинарной точности в формате с плавающей точкой приблизительно эквивалентно десятичному числу, состоящему из семи цифр. По этой причине считается, что число одинарной точности в формате с плавающей точкой имеет точность до 24 битов, или около семи десятичных знаков. Что это значит?
Точность числа с фиксированной точкой очевидна. Например, денежная сумма, выраженная в виде числа с фиксированной точкой, имеющего два десятичных знака, определена с точностью до цента. Однако о числах с плавающей точкой мы не можем сказать ничего подобного. В зависимости от значения порядка число с плавающей точкой может иметь точность до долей цента или до десятков долларов.
Правильнее было бы сказать, что число одинарной точности с плавающей точкой имеет точность до одной части из 224 (одной части из 16 777 216, примерно до шести частей из 100 миллионов). Что это значит на самом деле ?
Во-первых, если вы попытаетесь выразить значения 16 777 216 и 16 777 217 в виде чисел одинарной точности с плавающей точкой, они окажутся одинаковыми. Более того, любое число в промежутке между этими двумя значениями (например, 16 777 216,5) тоже будет совпадать с ними. Все три десятичных числа сохраняются в памяти в виде 32-битного числа одинарной точности с плавающей точкой, которое, будучи разделенным на биты знака, порядка и значащей части, выглядит следующим образом.
4B800000h
0 10010111 00000000000000000000000
И оно эквивалентно
1,00000000000000000000000ДВА × 224.
Следующее значение, выраженное двоичным числом с плавающей точкой, эквивалентно числу 16 777 218:
1,00000000000000000000001ДВА × 224.
Хранение двух разных десятичных значений в виде одинаковых чисел с плавающей точкой не всегда создает проблемы.
Правда, если при написании банковской программы вы используете числа одинарной точности с плавающей точкой для хранения денежных сумм в долларах и центах, вас, вероятно, будет беспокоить то, что 262 144,00 доллара равны 262 144,01 доллара. Обе эти суммы выражаются числом:
1,00000000000000000000000ДВА × 218.
Это одна из причин, почему при работе с долларами и центами предпочтительнее применять формат с фиксированной точкой. При использовании чисел с плавающей точкой вы можете обнаружить и другие раздражающие нюансы. Например, программа, выполняющая вычисление, в результате которого должно получиться число 3,50, выдает значение 3,499999999999. Так часто бывает при использовании чисел с плавающей точкой, и с этим ничего нельзя поделать.
Если вы твердо решили остановиться на числах с плавающей точкой, но вам недостаточно одинарной точности, попробуйте применить числа с плавающей точкой двойной точности . Числа в этом формате занимают восемь байт памяти, распределенных следующим образом.
1 знаковый бит ( s )
11 бит порядка ( e )
52 бита дробной значащей части ( f )
Смещение порядка равно 1023, или 3FFh, поэтому число в этом формате записывается так:
(–1)s × 1, f × 2е − 1023.
К нулю, бесконечности и значениям NaN применяются правила, аналогичные тем, которые мы рассматривали, когда говорили о числах одинарной точности.
Наименьшее положительное или отрицательное число двойной точности с плавающей точкой следующее:
1,0000000000000000000000000000000000000000000000000000ДВА × 2–1022.
В этом числе после двоичного разделителя следуют 52 нуля. Наибольшее число:
1,1111111111111111111111111111111111111111111111111111ДВА × 21023.
Соответствующие десятичные числа формируют диапазон примерно от 2,2250738585072014 × 10–308 до 1,7976931348623158 × 10308. Число 10308 очень велико, оно представляет единицу с 308 нулями.
Пятидесятитрехбитная значащая часть числа (включая первый неучитываемый бит) приблизительно эквивалентна 16 десятичным знакам. Это уже намного лучше формата с одинарной точностью, однако вероятность того, что какое-то число однажды станет равно другому, по-прежнему существует. Возьмем, к примеру, числа 140 737 488 355 328,00 и 140 737 488 355 328,01. Они оба будут храниться в виде 64-битного числа двойной точности с плавающей точкой:
42E0000000000000h.
В двоичном формате это число выглядит так:
1,0000000000000000000000000000000000000000000000000000ДВА × 247.
Разумеется, разработка формата для хранения в памяти чисел с плавающей точкой является лишь небольшим этапом в процессе фактического использования этих чисел в программах, написанных на языке ассемблера. Если бы вы конструировали компьютер с нуля, сейчас бы возникла проблема создания набора функций для сложения, вычитания, умножения и деления чисел с плавающей точкой. К счастью, эти задачи можно разбить на более мелкие подзадачи, связанные со сложением, вычитанием, умножением и делением целых чисел, решать которые вы уже научились.
Например, сложение чисел с плавающей точкой сводится к сложению их значащих частей; сложность заключается лишь в порядках. Предположим, вам необходимо выполнить следующую операцию сложения:
(1,1101 × 25) + (1,0010 × 22).
В данном случае нужно сложить числа 11101 и 10010, однако второе число необходимо преобразовать с учетом разницы в значениях порядков. Фактически требуется сложить целые числа 11101000 и 10010. Итоговая сумма составит:
1,1111010 × 25.
Иногда разница в порядках может быть такой большой, что одно из двух чисел даже не повлияет на сумму. Это может произойти, например, при сложении расстояния от Земли до Солнца и радиуса атома водорода.
Перемножение двух чисел с плавающей точкой сводится к перемножению двух значащих частей как обычных целых чисел и сложению двух целочисленных значений порядков. Нормализация значащей части может привести к уменьшению нового значения порядка.
Читать дальшеИнтервал:
Закладка: