Мередит Бруссард - Искусственный интеллект [Пределы возможного] [litres]
- Название:Искусственный интеллект [Пределы возможного] [litres]
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2020
- Город:Москва
- ISBN:978-5-0013-9230-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мередит Бруссард - Искусственный интеллект [Пределы возможного] [litres] краткое содержание
Всеобщий энтузиазм по поводу применения компьютерных технологий, по ее убеждению, уже привел к огромному количеству недоработанных решений в области проектирования цифровых систем. Выступая против техношовинизма и социальных иллюзий о спасительной роли технологий, Бруссард отправляется в путешествие по компьютерному миру: рискуя жизнью, садится за руль экспериментального автомобиля с автопилотом; задействует искусственный интеллект, чтобы выяснить, почему студенты не могут сдать стандартизованные тесты; использует машинное обучение, подсчитывая вероятность выживания пассажиров «Титаника»; как дата-журналист создает программу для поиска махинаций при финансировании кандидатов в президенты США.
Только понимая пределы компьютерных технологий, утверждает Бруссард, мы сможем распорядиться ими так, чтобы сделать мир лучше.
Искусственный интеллект [Пределы возможного] [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Кажется, Крафчик осуждает водителей. Мол, надоедливые людишки совершают свои человечески ошибки. Это техношовинизм. Разумеется , люди ответственны за водительские ошибки, ведь это они за рулем! (Хотя я однажды видела, как выглядела собака в кепке янки за рулем миниатюрного мерседеса на пешеходной дорожке Бродвея в Нижнем Манхэттене. Я настороженно присмотрелась: позади шел хозяин с пультом управления. А вот это уже привело меня к прекрасно проведенному дню, когда я просматривала видео с животными за рулем радиоуправляемых устройств.)
Мы давно владеем машинами, настолько, чтобы понимать, что люди обязательно будут совершать ошибки за рулем. Потому что они люди. А люди совершают ошибки. И никто не идеальный водитель, даже те, кто пишет программное обеспечение для автономных автомобилей. Когда представляешь себе, что за рулем люди проезжают триллионы километров ежегодно и в большинстве случаев умудряются не совершать ошибки, это впечатляет.
Образ человека, совершающего ошибки, всплывает снова и снова. Смерть людей печальна, я не хочу минимизировать последствия смерти. Однако, когда такую статистику повторяют снова и снова, начинают закрадываться подозрения. Обычно это значит, что у всех данных один источник, следовательно, речь идет о заинтересованной группе лиц, пытающихся повлиять на общественное мнение. Цифра вероятности совершения ошибки (95 %), упомянутая Крафчиком, фигурировала в февральском отчете 2015 г., написанном Сантохом Сингхом, старшим математиком-статистом компании Bowhead Systems Management, Inc [112] См.: Singh, “Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey.” Если вам интересна тема, обратите внимание на работы Best, Damned Lies and Statistics. Статистика – это один из способов интерпретации социальных проблем, и нередко она помогает выявить проблемы. Так, например, Mothers Against Drunk Driving при помощи статистики способствовали трансформации норм относительно вождения в нетрезвом виде. Сегодня большинство согласно с тем, что не стоит садиться нетрезвыми за руль. Однако утверждение, что люди, в отличие от машин, не должны водить, – это совсем другая истории.
. Сингх работал по контракту с отделом математического анализа Национального центра статистики и анализа – подразделением Национального управления по безопасности движения автотранспорта. В отчете представлено 5470 случаев аварий, а также причины и предпосылки для каждой из них: водитель, машина или обстановка (то есть дорога или погода).
Bowhead Systems Management – это фирма, подконтрольная Ukpeaġvik Iñupiat Corporation, компании, сотрудничающей на контрактной основе с ВМС США в рамках операций UAS (беспилотных автономных систем) в Мэриленде и Неваде. Другими словами, Bowhead, компания, производящая беспилотные системы военного назначения, создала официальную государственную статистику, обосновывающую разработку беспилотных автономных систем (машин) для гражданских нужд.
Согласно данным Национального центра исследований здравоохранения (NCHS), в США в 2014 г. из-за механических транспортных средств погибло 35 398 человек – это самые актуальные доступные данные. Получается 11 смертей на 100 000 человек. В среднем стандартизированный по возрасту индекс смерти, учитывающий старение населения, составляет 764,6 на 100 000.
Много людей гибнет в результате ДТП; это одна из важнейших проблем здравоохранения. На языке статистики смерть от ран называется травматической смертностью . Травмы в результате неумышленных ДТП были самой распространенной причиной травматической смертности в период с 2002 по 2010 г., следующая по распространению причина – непредумышленное отравление. В 2015 г. Национальное управление по безопасности движения автотранспорта Департамента транспорта США обнаружило рост смертности по итогам ДТП на 7,7 % в 2015 г. Таким образом, согласно имеющимся у нас данным, в 2014 г. умерло 32 675 человек, в 2015 г. – 35 200.
Можно сколько угодно рассуждать о причинах, но потеря внимания и переписка за рулем способствуют росту смертности. Одним из очевидных решений были бы инвестиции в систему общественного транспорта. Например, в области Калифорнийского залива финансирование общественного транспорта ужасающе низкое. Когда я в последний раз пыталась воспользоваться метро в час пик в Сан-Франциско, я пропустила три поезда, пока в итоге не втиснулась в забитый битком вагон. Дорожная ситуация в разы хуже. И я не удивлена тому, что местные программисты разрабатывают беспилотные машины – чтобы заниматься чем-то, кроме ворчания в пробках. Однако финансирование общественного транспорта – комплексная проблема, требующая масштабных совместных усилий в течение нескольких лет. Она также подразумевает задействование государственной бюрократической машины. И этот как раз тот тип проекта, который люди из мира технологий не спешат начинать, поскольку он действительно может занять много времени, он сложный и в нем не будет простых решений.
Тем временем беспилотная машина остается мечтой. В 2011 г. Себастиан Тран запустил Google X, самое амбициозное подразделение компании. В 2012 г. он основал Udacity, которая также потерпела крах. «Я стремился дать людям нечто фундаментальное – научить их чему-то существенному. Однако реальность расходились с этой идеей, – сказал Тран журналисту Fast Company . – Наш проект был паршивым» [113] Chafkin, “Udacity’s Sebastian Thrun, Godfather of Free Online Education, Changes Course.”
.
Тран всегда был честен относительно того, что у него не получалось, – но, кажется, никто не обращал на это внимания. Почему? Жадность – простейший ответ. Роджер Макнами, инвестор в технологии, как-то сказал New Yorker : «Некоторые из нас – наивные, насколько это возможно, – действительно хотели сделать мир лучше. У нас не получилось. Что-то действительно стало чуть лучше, что-то, наоборот, хуже. Тем временем пришли к власти либертарианцы, которым все равно, что правильно, а что – нет. Они здесь, чтобы заработать» [114] Marantz, “How ‘Silicon Valley’ Nails Silicon Valley.”
.
Наконец, в 2017 г. любопытство увидеть, насколько реальность соответствует тому, о чем я читала, пересилило, и я решилась снова попробовать покататься на беспилотном автомобиле. Сначала я попробовала Uber в Питтсбурге, недалеко от места, где живу. Сотрудник рекламного отдела сказал, что нет свободных авто. Я спросила, могу ли я просто приехать в Питтсбург и поймать беспилотное такси. Ответ меня разочаровал. Но я поняла, почему это было невозможно: машины не поступили в массовое использование. Они пока не готовы к прайм-тайму.
У беспилотных машин есть проблемы. Они не могут держаться центра полосы на плохо убранной дороге. Не работают в снег и при других плохих погодных условиях, когда не могут «видеть». Автономное вождение на основе системы LIDAR работает по принципу отражения лазерного луча от окружающих объектов. Измеряя время отражения луча, система распознает расстояние до них. Во время дождя, снега или в пыли лучи отражаются от частиц в воздухе, а не от препятствий вроде велосипедистов. Однажды беспилотный автомобиль был замечен за ездой в неправильном направлении по односторонней улице. Автомобиль легко запутать, поскольку он полагается на те же посредственные алгоритмы, что перепутали фотографии черных людей с гориллами [115] Dougherty, “Google Photos Mistakenly Labels Black People ‘Gorillas.’”
. На большинстве беспилотных машин используются алгоритмы, которые называются глубокими нейронными сетями, их можно запутать, просто прилепив стикер или нарисовав граффити на знаке «стоп» [116] Evtimov et al., “Robust Physical-World Attacks on Deep Learning Models.”
. Глушилки сигнала GPS нелегальны, но их можно спокойно купить онлайн за $50. На коммерческих фургонах частенько их используют, чтобы бесплатно пройти пункт взимания дорожных сборов [117] Hill, “Jamming GPS Signals Is Illegal, Dangerous, Cheap, and Easy.”
. Автономные машины передвигаются, опираясь на данные GPS; что произойдет, если беспилотный школьный автобус, на скорости 120 км/ч, потеряет сигнал GPS из-за глушилки на грузовике в соседнем ряду?
Интервал:
Закладка: