Сергей Попов - Все формулы мира

Тут можно читать онлайн Сергей Попов - Все формулы мира - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент Альпина, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Сергей Попов - Все формулы мира краткое содержание

Все формулы мира - описание и краткое содержание, автор Сергей Попов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Галилео Галилею принадлежат слова: «Книга природы написана на языке математики». Спустя почти четыре столетия мы не устаем удивляться тому, что математические методы прекрасно подходят для описания нашего мира. Еще большее изумление вызывают естественнонаучные открытия, сделанные на основе математического анализа уравнений. Создание любой сложной конструкции – от хитроумной дорожной развязки до квантового компьютера – сопряжено с математическими расчетами. Для полноценного понимания действия гравитации или квантовых явлений нам также не обойтись без математики. Но это кажется таким сложным и запутанным! Как перестать бояться формул и полюбить математику? Почему она так эффективна в естественных науках? Есть ли этому предел, или, наоборот, для более глубокого понимания природы придется создавать математические конструкции, уже не укладывающиеся в голове человека? Все эти вопросы затрагиваются на страницах книги, а их художественное осмысление представлено в серии рисунков художника Ростана Тавасиева. На многие из них невозможно найти окончательные однозначные ответы. Но мы продолжаем обсуждать их и пытаемся понять, как устроен этот мир. Для этого понадобится преодолеть разделение на «две культуры»: «гуманитариев» и «естественников». Попробуем сделать еще один шаг в этом направлении.

Все формулы мира - читать онлайн бесплатно ознакомительный отрывок

Все формулы мира - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Сергей Попов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Дальше произведем короткую цепочку простых преобразований помня что мы - фото 20

Дальше произведем короткую цепочку простых преобразований, помня, что мы считаем сопутствующее расстояние неизменяющимся:

Все формулы мира - изображение 21

Вспомним, что r = , и введем обозначение:

Все формулы мира - изображение 22

Получаем искомое v = Hr , где H – постоянная Хаббла.

Вот мы и вывели закон Хаббла. Теперь посмотрим на некоторые следствия из него.

Крайне существенно, что в космологии надо использовать общую теорию относительности. Это не та ситуация, где можно обойтись лишь СТО, такая попытка приведет к неправильным результатам и только запутает. Например, скорости в космологии складываются по простому галилеевскому правилу.

Если у нас есть три галактики на одной прямой – 1, 2 и 3, то скорость третьей относительно первой составит:

v 13 = v 12+ v 23= Hr 12+ Hr 23= Hr 13 ,

где r 13= r 12+ r 23 .

Это верно для любых скоростей: не только близких к скорости света, но и превосходящих ее.

Кроме участия в космологическом расширении – так называемом хаббловском потоке, галактики могут иметь пекулярные скорости (например, пара галактик может сближаться, как Млечный Путь и Туманность Андромеды). Такие скорости соответствуют изменению сопутствующих координат:

Здесь первое слагаемое обычное космологическое расширение а второе связано с - фото 23

Здесь первое слагаемое – обычное космологическое расширение, а второе связано с пекулярной скоростью. Снова мы имеем дело с простой суммой, какими бы большими ни были скорости.

А они могут быть большими. Если пекулярные скорости не могут превосходить световую, то скорость, связанная с космологическим расширением (именно она входит в закон Хаббла), может быть любой, если расстояние сколь угодно велико. Таким образом, есть расстояние, на котором она сравнивается с c = 300 000 км/с.

Хаббловской сферой называют поверхность, собственное расстояние до которой определяется как r = c / H . Иными словами, в данный момент времени галактики, находящиеся на сфере Хаббла, удаляются от нас из-за расширения Вселенной со скоростью, равной скорости света. Заметим, что мы можем наблюдать галактики, находящиеся сейчас за сферой Хаббла. Следовательно, эта поверхность не является горизонтом.

Постоянная Хаббла меняется со временем (зато она одинакова во всех местах в данный момент времени). В нашей вселенной в течение всей ее истории по окончании стадии инфляции постоянная Хаббла уменьшается. Соответственно, поскольку скорость света постоянна, собственное расстояние до хаббловской сферы в настоящее время растет (т. е. в метрах, сантиметрах и т. д. это расстояние возрастает).

Вопрос в том, с какой скоростью увеличивается расстояние до сферы Хаббла. В ускоренно расширяющейся вселенной это расстояние растет со скоростью меньше световой, а в замедленно расширяющейся – быстрее. Точная формула для этой скорости c (1 + q) , где q – так называемый параметр замедления; этот параметр меньше нуля во вселенной, расширяющейся с ускорением (у нас сейчас он равен примерно 0,55), и больше нуля – в противоположном случае. Знак параметра замедления обратен знаку второй производной масштабного фактора. Масштабный фактор в расширяющейся вселенной всегда растет, соответственно, его первая производная положительна. А вот вторая как раз отражает, происходит ли рост расстояний все быстрее и быстрее (ускоренно расширяющаяся вселенная) или нет.

В ускоренно расширяющейся вселенной галактики «вылетают» за сферу Хаббла, поскольку «чуть за» сферой Хаббла их скорость больше световой (вспомним, что не надо бояться сверхсветовых скоростей в космологии), и сфера от них отстает, потому что движется с меньшей скоростью. Это можно описать как «продвижение» сферы Хаббла в нашу сторону, если говорить о сопутствующем расстоянии. Таким образом, сопутствующее расстояние до сферы Хаббла уменьшается. Во Вселенной, расширяющейся с замедлением, ситуация обратная.

Замечу, что в космологии можно говорить о разных определениях расстояний, скоростей и времени. Если это не уточняется, то может возникать путаница. Подробнее почитать обо всем этом можно в серии статей на сайте «Астронет» [95] Попов С.Б. Сверхсветовое разбегание галактик и горизонты Вселенной: путаница в тонкостях (см.: http://www.astronet.ru/db/msg/1194830 ); С.Б. Попов, А.В. Топоренский. Не боги расширение вселенной наблюдают (см.: http://www.astronet.ru/db/msg/1307314 ); Они же. Куда смещается красное смещение (см.: http://www.astronet.ru/db/msg/1320286 ). .

Приложение 2

Метод размерностей. Параметры в центре Солнца и пульсации звезд

Яркой иллюстрацией того, как с помощью качественных рассуждений можно получать правильные физические формулы, является метод размерностей [96] Впервые я познакомился с этим методом по замечательной книге Бориса Иванова «Законы физики» (М.: Высш. шк., 1986), которая очень мне нравилась в старших классах. Отмечу еще две известные книги, посвященные методу размерностей. Во-первых, это известная монография Леонида Седова «Методы подобия и размерности в механике» (М.: Наука, 1987). Во-вторых, множество применений метода в астрономии рассмотрено в книге Самуила Каплана и Эдуарда Дибая «Размерности и подобие астрофизических величин» (М.: Наука, 1976). Эта книга также доступна в сети (см.: http://www.astronet.ru/db/msg/1252779/ ). . Мы рассмотрим здесь два простых примера: параметры в центре Солнца и период пульсаций звезд.

Идея метода крайне проста. Мы хотим получить формулу для расчета какой-то величины A , имеющей определенную размерность. Подумаем, от каких параметров она может зависеть. Пусть это другие величины B, C, D . Обычно зависимости носят степенной характер (т. е. величины входят в конечную формулу в какой-то степени). Возьмем выбранные нами величины, а показатели их степени будут нашими неизвестными: x, y, z . Наше гипотетическое уравнение имеет вид: A = B xC yD z . Теперь существенно, что все это – размерные величины [97] Кроме того, крайне важно, чтобы величины B, C, D сами не образовывали безразмерную комбинацию, иначе задача будет иметь бесконечное число решений. . Размерность обозначают символом величины в квадратных скобках: [ A ]. Значит, для размерностей должно выполняться то же самое уравнение:

Все формулы мира - изображение 24

Ведь если слева секунды, то и справа должны получаться секунды, а не сантиметры или граммы. Уравнение для размерностей дает нам систему простых линейных уравнений, решение которой может дать показатели степени x, y, z . Иначе говоря, мы найдем нашу искомую формулу. Конечно, в ней также могут быть безразмерные коэффициенты. С ними разбираться уже сложнее, но иногда и это оказывается возможным. Посмотрим на примеры.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Попов читать все книги автора по порядку

Сергей Попов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Все формулы мира отзывы


Отзывы читателей о книге Все формулы мира, автор: Сергей Попов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x