Сергей Попов - Все формулы мира

Тут можно читать онлайн Сергей Попов - Все формулы мира - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент Альпина, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Сергей Попов - Все формулы мира краткое содержание

Все формулы мира - описание и краткое содержание, автор Сергей Попов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Галилео Галилею принадлежат слова: «Книга природы написана на языке математики». Спустя почти четыре столетия мы не устаем удивляться тому, что математические методы прекрасно подходят для описания нашего мира. Еще большее изумление вызывают естественнонаучные открытия, сделанные на основе математического анализа уравнений. Создание любой сложной конструкции – от хитроумной дорожной развязки до квантового компьютера – сопряжено с математическими расчетами. Для полноценного понимания действия гравитации или квантовых явлений нам также не обойтись без математики. Но это кажется таким сложным и запутанным! Как перестать бояться формул и полюбить математику? Почему она так эффективна в естественных науках? Есть ли этому предел, или, наоборот, для более глубокого понимания природы придется создавать математические конструкции, уже не укладывающиеся в голове человека? Все эти вопросы затрагиваются на страницах книги, а их художественное осмысление представлено в серии рисунков художника Ростана Тавасиева. На многие из них невозможно найти окончательные однозначные ответы. Но мы продолжаем обсуждать их и пытаемся понять, как устроен этот мир. Для этого понадобится преодолеть разделение на «две культуры»: «гуманитариев» и «естественников». Попробуем сделать еще один шаг в этом направлении.

Все формулы мира - читать онлайн бесплатно ознакомительный отрывок

Все формулы мира - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Сергей Попов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Начнем с оценки давления в центре Солнца (а затем получим температуру, правда, уже не методом размерностей, а используя физику 10-го класса средней школы). Солнце находится в состоянии гидростатического равновесия. Градиент давления (оно растет внутрь) уравновешивает силу тяжести. Значит, давление должно выражаться через параметры, связанные с солнечной гравитацией. Таким образом, в нашу формулу войдет масса Солнца M и гравитационная постоянная G . Сила гравитации зависит от расстояния. Характерный масштаб в задаче – размер Солнца, R . Добавим и его. Тогда для давления получим:

Все формулы мира - изображение 25

Теперь займемся размерностями. С массой и радиусом все просто: [ M ] = г, [ R ] = см. Давление – это в первую очередь плотность энергии, т. е. для него можно записать:

Все формулы мира - изображение 26

Размерность энергии, выраженную через базовые величины, можно вспомнить благодаря формуле E = mv 2/ 2: [ E ] = г см 2с –2. Значит, для давления получим: [ P ] = г см –1с –2. Остается гравитационная постоянная. Ее размерность, конечно, можно взять из справочника, а можно вспомнить закон всемирного тяготения:

Все формулы мира - изображение 27

Для размерностей должно выполняться такое же соотношение:

Иначе говоря G F R 2 M 2 Размерность силы напомним что - фото 28

Иначе говоря, [ G ] = [ F ][ R ] 2/ [ M ] 2. Размерность силы (напомним, что сила равна произведению массы на ускорение) равняется г см с –2. Значит, [ G ] = г см с –2см 2г –2= г –1см 3с –2. Теперь можно вернуться к нашему уравнению для давления, записав его для размерностей:

г см –1с –2= (г –1см 3с –2) x (г) y (см) z .

Преобразуем правую часть и упорядочим ее, получим:

г см –1с –2= г yx см 3 x + z с –2 x .

По отдельности должны выполняться равенства для каждой базовой размерности слева и справа, т. е. имеем систему уравнений: 1 = y – x; –1 = 3 x + z; – 2 = –2 x .

Решая ее, получим: x = 1; y = 2; z = –4.

Иначе говоря, P = GM 2 R –4. Это то, что мы и хотели! Формула для расчета давления в недрах Солнца!!! Остается подставить солнечную массу (2·10 33г) и радиус (696 000 км). Получим, что давление в центре Солнца в 10 млрд раз больше атмосферного давления у поверхности Земли!

Чтобы получить температуру, возьмем формулу для идеального газа из школьного учебника:

Все формулы мира - изображение 29

где V – объем, картинка 30 – универсальная газовая постоянная, а картинка 31 – молярный вес (для простоты можно считать, что Солнце состоит из атомарного водорода). Вместо давления подставим P = GM 2 R –4и преобразуем формулы, выразив температуру:

Все формулы мира - изображение 32

Остается подставить числа. Ответ – температура порядка 20 млн Кельвин. Полученные нами оценки температуры и давления близки к верным значениям.

Аналогично можно получить формулу для периода пульсаций звезды. Правда, здесь ответ будет менее точным из-за наличия безразмерного коэффициента, который нам трудно определить точно таким же методом. Зато зависимость от ключевых величин мы получим правильную.

Снова будем искать формулу для периода в виде G xM yR z . Есть всего лишь один набор показателей степени x, y, z , дающих величину с размерностью времени. Эта комбинация: R 3 / 2/ ( GM ) 1 / 2. Заметим, что частное от деления массы на куб радиуса имеет размерность плотности. Тогда получим, что период пульсаций звезды (вообще, газового шара), P puls , пропорционален квадратному корню из произведения гравитационной постоянной на среднюю плотность. А поскольку G – постоянная, то важным фактом является пропорциональность периода пульсаций обратному квадратному корню из плотности:

Все формулы мира - изображение 33

У звезд типа Солнца чем меньше масса, тем выше средняя плотность. Это говорит о том, что с ростом массы растет и период пульсаций. Кроме того, низкая средняя плотность проэволюционировавших и раздувшихся звезд приводит к большим периодам, что и наблюдается. Если у Солнца основной период пульсаций составляет около часа, то у звезд-гигантов он может составлять десятки дней, что неудивительно, ведь их радиусы в сотни раз больше.

Приложение 3

Аккреция, предельная светимость и массы сверхмассивных черных дыр

Возьмем предмет, поднимем его над полом и отпустим. Он со стуком упадет. Звук – это продольные волны, распространяющиеся в среде и переносящие энергию. Откуда взялась эта энергия в случае падающего тела? Ответ дается в школьном курсе физики. Там рассказывается, что тело на высоте h имеет так называемую потенциальную энергию E p = mgh , где m – масса тела, а g – ускорение свободного падения. Ускорение можно рассчитать из закона всемирного тяготения:

где G ньютоновская постоянная M масса Земли а R ее радиус В школьных - фото 34

где G – ньютоновская постоянная, M – масса Земли, а R – ее радиус.

В школьных задачах чаще всего можно считать, что высота, с которой падает тело, намного меньше радиуса Земли ( R >> h ), поэтому g не изменяется.

При падении тело разгоняется, так как на него действует сила в направлении движения. Растет кинетическая энергия, равная:

Все формулы мира - изображение 35

Этот рост происходит за счет уменьшения потенциальной энергии. К моменту удара, как учит нас школьный учебник, вся потенциальная энергия успела перейти в кинетическую. Затем практически мгновенно вся кинетическая энергия перейдет в другие формы, например в тепловую энергию и в энергию звуковой волны. В бытовых ситуациях тепловой эффект мы обычно не замечаем, но вот если на Землю падает крупный метеорит, то нагрев более чем заметен, свидетельством чего являются так называемые тектиты – оплавленные куски стекла, возникающие из-за нагрева пород при ударе.

Школьное описание является несколько упрощенной версией. Нас будет интересовать падение вещества на нейтронные звезды и черные дыры, при этом расстояние, с которого оно прилетает, намного больше размеров компактных объектов. Для такого случая запишем потенциальную энергию более корректно:

где M масса массивного тела а m масса падающего объекта в такой - фото 36

где M – масса массивного тела, а m – масса падающего объекта (в такой постановке M >> m ).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Попов читать все книги автора по порядку

Сергей Попов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Все формулы мира отзывы


Отзывы читателей о книге Все формулы мира, автор: Сергей Попов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x