Сергей Попов - Все формулы мира
- Название:Все формулы мира
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9184-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Попов - Все формулы мира краткое содержание
Все формулы мира - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Буквой r мы обозначили расстояние, с которого прилетает вещество, отсчитывая его от гравитирующего центра (т. е. от центра массивного тела).
Вы уже обратили внимание, что потенциальная энергия отрицательна. Она отражает, насколько сильна связь между телами, т. е. сколько нужно энергии, чтобы эту связь разорвать. Скажем, если объект покоится на поверхности массивного тела, то, сообщив ему кинетическую энергию, меньшую, чем модуль потенциальной энергии, но бóльшую, чем его половина, мы сможем вывести его на орбиту. А в результате передачи кинетической энергии, большей модуля потенциальной, объект перестанет быть гравитационно связанным с массивным телом, поскольку сумма потенциальной и кинетической энергии станет положительной.
Нас сейчас будет интересовать аккреция вещества, т. е. его падение на гравитирующий центр. Полная энергия для частиц такого вещества будет отрицательной (мы не рассматриваем случай, когда частицы просто «влетают в лоб», т. е. случайно имеют траекторию движения, пересекающуюся с поверхностью тела). При падении потенциальная энергия уменьшается (отрицательная величина растет по модулю). Значит, должны расти другие виды энергии, имеющие положительное значение, и по крайней мере часть этой энергии может быть излучена. Поэтому в астрофизике аккреция нередко приводит к появлению заметных источников излучения.
Возьмем один грамм вещества на большом расстоянии от массивного тела. Пусть вначале скорость вещества пренебрежимо мала, т. е. его полная энергия примерно равна потенциальной (тут мы не учитываем энергию покоя и внутреннюю энергию вещества). Если расстояние достаточно велико (как говорят, «вещество падает из бесконечности»), то энергия равна нулю. При достижении поверхности потенциальная энергия для единичной массы ( m = 1) станет равной E p= – GM / r.
Но полная энергия должна оставаться нулевой, т. е. излучена может быть энергия, равная по модулю E p(обычно не вся эта энергия излучается, часть перейдет в другие формы). Оценим, насколько эта величина может быть велика.
При падении на Землю (если пренебречь влиянием атмосферы) энергия от падения 1 грамма вещества составит примерно 6 × 10 11эрг (или 60 кДж). Это всего лишь 15 г в тротиловом эквиваленте. Но если мы теперь возьмем массу километрового астероида, то получим около 20 000 Мт ТНТ! Много, но с галактических расстояний такое не разглядеть.
Посмотрим на другие источники. Один грамм, упавший на поверхность массивного белого карлика, даст в миллион раз больше, чем при падении на Землю. Иными словами, примерно 40 граммов дадут одну килотонну, а в случае нейтронной звезды уже один грамм будет давать несколько килотонн! Это примерно 10 % от E = mc 2. Вспомним, что термоядерные реакции в недрах звезд имеют КПД всего лишь 0,7 % (т. е. при синтезе гелия из водорода выделяется лишь 0,007 от mc 2). Стало быть, нет ничего удивительного в том, что аккрецирующие нейтронные звезды наблюдаются как мощные источники.
А что с черными дырами? Они же еще компактнее нейтронных звезд. Да, но зато у них нет поверхности. Поэтому в принципе падающее вещество может унести энергию с собой под горизонт. Значит, надо заставить вещество выделить ее достаточно близко от него. Такая ситуация реализуется при формировании аккреционных дисков вокруг черных дыр. Вещество, обладающее достаточно большим орбитальным моментом, закручивается в диск вокруг тяготеющего центра. Из-за трения вещество в диске нагревается, что и позволяет излучить значительную долю энергии.
Откуда же взять много вещества, чтобы возник мощный источник? Чтобы за счет аккреции на нейтронную звезду обеспечить светимость, равную солнечной, надо примерно раз в минуту сбрасывать на нее комету. Что может быть регулярным источником такой массы? Во-первых, есть межзвездная среда. Плотность ее невелика, но в некоторых случаях ее может быть достаточно, чтобы одиночная аккрецирующая нейтронная звезда стала заметным источником. Пока такие объекты не открыты, но ждать, видимо, остается недолго [98] Я почти уверен, что телескоп eROSITA на борту российского спутника «Спектр-РГ» сможет открыть такие источники.
. Во-вторых, звезды часто рождаются не поодиночке, а парами. Перетекание вещества (или его перенос за счет звездного ветра) со звезды-соседки на компактный объект может привести к появлению источника большой светимости.
Светимость по порядку величины можно посчитать по такой простой формуле:

Первый сомножитель dm / dt называют темпом аккреции, он показывает, сколько вещества аккрецирует за единицу времени. Казалось бы, неограниченно наращивая темп аккреции, мы получим сколь угодно большую светимость. Не тут-то было!
Существует предельное значение светимости, которое носит имя Артура Эддингтона, – эддингтоновская светимость. Физика здесь довольно проста: свет оказывает давление. Значит, если поток излучения слишком велик, то он будет попросту «сдувать» лишнее вещество. Установится некоторый баланс между действием гравитации, стремящейся притянуть как можно больше вещества, и излучением, поток которого растет по мере возрастания темпа аккреции. Попробуем получить формулу для эддингтоновской светимости.
Рассмотрим водородную плазму, поскольку типичный – так называемый солнечный – состав вещества звезд соответствует водородно- гелиевой смеси, на 90 % по числу атомов состоящей из самого легкого элемента. У нас есть частицы всего двух сортов: тяжелые протоны и легкие электроны, и их количество равно друг другу, так как вещество должно быть электрически нейтральным. Соответственно, рассмотрим пару электрон-протон.
На частицы действуют две силы: гравитация и давление излучения. Можно считать, что сила тяжести в основном действует на протоны (поскольку они примерно в 2000 раз тяжелее электронов), а давление света – на электроны. И эти силы, приложенные к паре, уравновешивают друг друга.
Рассмотрим вещество у поверхности объекта массой M и радиуса r . С гравитацией все просто:

где m p– масса протона.
Теперь нам надо разобраться с силой, связанной с давлением излучения. Введем величину потока излучения, равную энергии, проходящей через единичную площадь за единицу времени:

где L – светимость (т. е. мощность источника).
Но нам нужно рассчитать силу, действующую на один электрон. Мы сделаем это так: запишем силу как давление, создаваемое излучением, на площадь.
Читать дальшеИнтервал:
Закладка: