Сергей Попов - Все формулы мира
- Название:Все формулы мира
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9184-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Попов - Все формулы мира краткое содержание
Все формулы мира - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Это отношение примерно равно 0,00045. Учитывая, что за время существования Галактики в ней сформировалось около 300 млрд звезд, мы получим, что сейчас в ней должно быть около 135 млн черных дыр (заметим, что это очень близко к более точным расчетам). Типичная масса таких объектов – 5–10 масс Солнца. Это следует и из теории, и из наблюдения черных дыр в тесных аккрецирующих двойных системах.
При рождении черные дыры, в отличие от нейтронных звезд, в среднем не получают большую дополнительную скорость, связанную с асимметрией взрыва сверхновой (так называемый кик). Значит, они остаются в галактическом диске, и мы можем легко оценить их плотность в солнечной окрестности. Представим диск Галактики в виде цилиндра с радиусом около 15 кпк и толщиной около 1 кпк. Разделив его объем на количество черных дыр, получим объем, приходящийся на один объект, – это около 5000 кубических парсек. Значит, расстояние до ближайшей одиночной черной дыры будет порядка 10 пк.
Таким образом, черных дыр звездных масс в Галактике много, и они могут находиться не так уж далеко от нас. Вопрос в том, как их обнаружить.
В приложении 3 мы обсудили, что аккреция на черные дыры может приводить к выделению значительной энергии. Надо только найти эффективный источник вещества. Если компактный объект одиночный, т. е. бороздит просторы Галактики сам по себе, тогда единственным источником будет межзвездная среда [103] Одним из первых аккрецию вещества межзвездной среды на компактные объекты начал рассматривать в конце 1960-х – начале 1970-х гг. Викторий Шварцман, работавший вначале в Москве, а затем в Специальной астрофизической обсерватории на Северном Кавказе.
.
Плотность межзвездного вещества вблизи плоскости диска Галактики в солнечных окрестностях не слишком высока – около одного атома водорода в кубическом сантиметре. В молекулярных облаках это значение возрастает в десятки, а то и в сотни раз. Нам нужно оценить, с каким темпом черная дыра может захватывать это вещество.
Чаще всего, когда на популярной лекции заходит речь о черных дырах, выясняется, что хотя бы кто-то из слушателей полагает, что черные дыры – это такие пылесосы, которые «затягивают в себя все и когда- нибудь совсем все и затянут». Это совсем не так.
Действие черных дыр на другие тела определяется гравитацией. Если мимо черной дыры пролетает тело, то нам надо сравнить его кинетическую энергию, связанную с движением относительно компактного объекта, и гравитационную потенциальную энергию, связанную с взаимодействием между телами. Формулу для кинетической энергии все помнят:

Потенциальную энергию удобно считать отрицательной, и для нее выражение выглядит так:

где G – гравитационная (ньютоновская) постоянная, M – масса массивного центрального тела (в нашем случае – черной дыры), m – масса пролетающего тела, а v – его скорость.
Ясно, что если скорость слишком велика, то кинетическая энергия тоже будет велика, и, таким образом, полная энергия, равная сумме кинетической и потенциальной, будет больше нуля, т. е. система будет гравитационно несвязанной. Иными словами, тело пролетит мимо. Точно так же при большом расстоянии между телами – r – потенциальная энергия будет мала, и снова связанная система не образуется. Таким образом, чтобы черная дыра захватила пролетающее тело (им может быть и молекула газа межзвездной среды), надо, чтобы выполнялось некоторое условие [104] Сделаем важное уточнение. Если под пролетающим объектом иметь в виду, например, метеорное тело, то оно не будет захвачено, даже попав под радиус гравитационного захвата, поскольку изначально его полная энергия была положительной, и такой она и останется, поскольку объект постоянно будет разгоняться под действием гравитационного притяжения центрального тела. Радиус гравитационного захвата важен для нашего рассмотрения, поскольку мы обсуждаем захват газа межзвездной среды. В случае движения черной дыры или нейтронной звезды в межзвездной среде мы можем считать, что относительная скорость вещества и компактного объекта определяется только движением последнего.
. Вот оно:

Критическое расстояние R Gназывают радиусом гравитационного захвата.
Однако мало тело захватить, ведь оно может просто вращаться вокруг черной дыры на устойчивой орбите (как Земля вокруг Солнца или Луна вокруг Земли). Телу нужно избавиться от вращения – потерять орбитальный момент. В системе двух тел такой возможности практически нет (исключение составляют приливы, а в случае черной дыры и атома водорода какие уж тут приливы!). Необходимо, чтобы вокруг центрального массивного объекта вращалось несколько тел, которые могли бы достаточно эффективно обмениваться энергией и орбитальным моментом. Тогда часть из них сможет перейти на более низкие орбиты и в конечном счете выпасть на центральный объект.
В случае аккреции вещества межзвездной среды захватывается газ, поэтому за счет вязкости можно обеспечить довольно эффективный отвод орбитального момента наружу. Взаимодействие частиц газа в потоке будет приводить к переносу орбитального момента прочь от гравитирующего центра, а вещество, потерявшее момент, будет течь в его сторону. Поэтому аккреция начинается, если вещество проникло под радиус гравитационного захвата. Теперь мы можем сделать простую оценку максимального темпа аккреции.
Итак, черная дыра массы M летит со скоростью v сквозь межзвездную среду плотностью ρ. Будем считать, что все вещество, попадающее внутрь радиуса гравитационного захвата, в итоге поглотится черной дырой. Значит, объем поглощенного за единицу времени вещества будет равен объему цилиндра, длина которого равна произведению скорости на интервал времени (не забываем, что он у нас единичный), а площадь основания равна Таким образом, темп аккреции будет равен:

Учет некоторых тонкостей может изменить численный коэффициент, но общие зависимости останутся, и по порядку величины эта оценка верна.
Необходимо сделать один комментарий относительно скорости. Глядя на формулу, кажется, что можно достичь очень высокого темпа аккреции, если черная дыра будет двигаться относительно среды с очень низкой скоростью. Однако необходимо учесть, что частицы среды сами движутся, и в космических условиях эта скорость может быть довольно велика. Хорошей оценкой характерной скорости будет величина скорости звука v s в межзвездной среде, которая в зависимости от комбинации температуры и плотности может составлять от нескольких сотен метров в секунду в самых холодных и плотных областях до десятков километров в секунду. С учетом скорости звука формула немного изменится:
Читать дальшеИнтервал:
Закладка: