Сергей Попов - Все формулы мира
- Название:Все формулы мира
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9184-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Попов - Все формулы мира краткое содержание
Все формулы мира - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Чтобы упростить запись формул, удобно ввести две величины: угловую частоту вращения и момент инерции. Угловая частота – это просто 2π / P . Обозначим ее буквой ω. Момент инерции (его обозначим буквой I ) показывает, насколько инертно тело в смысле вращения, т. е. насколько трудно его раскрутить, а потом – затормозить (смысл примерно как у массы, характеризующей инертность в смысле поступательного движения). Момент инерции шара пропорционален произведению массы на квадрат радиуса (дополнительный безразмерный множитель зависит от распределения вещества в шаре). Энергия вращения запишется теперь в простом виде, напоминающем формулу для кинетической энергии: E = Iω 2 / 2. В случае нейтронной звезды I ≈ MR 2 что составляет примерно 10 45г·см 2. Период вращения может составлять 0,001 секунды. Таким образом, получаем, что энергия вращения нейтронной звезды может достигать колоссальной величины >10 52эрг. Насколько это много? Это больше, чем Солнце излучает за всю свою жизнь! Так что, даже если малую часть этой энергии конвертировать в энергию магнитного поля, можно получить очень большую величину.
Как посчитать энергию магнитного поля? Не будем начинать с самых основ, а сразу скажем, что плотность магнитной энергии (т. е. магнитное давление) вычисляется по формуле: B 2 /8π. Значит, чтобы узнать примерную магнитную энергию, содержащуюся в нейтронной звезде, надо эту величину умножить на объем звезды (для простоты предполагаем, что поле заполняет весь компактный объект). Если поле на поверхности равно 10 12Гс, то полная энергия будет равна 2·10 41эрг. Совсем немного. Но если поле магнитарное, то энергия возрастает до 10 47эрг, столько Солнце излучает за 1 млн лет. Однако видно, что энергия вращения может быть больше, так что ее хватит для усиления поля.
С чем еще можно сравнить энергию магнитного поля? Например, с потенциальной (гравитационной) энергией нейтронной звезды. Она вычисляется как GM 2/R . В типичном случае это составит 4·10 53эрг. Эта величина позволяет понять, каким может быть предельное магнитное поле. Из

получим, что поле никак не может быть больше 10 18Гс, иначе звезду «разорвет».
У нас нет примеров нейтронных звезд со столь сильными полями; скорее всего, в природе они не встречаются. Но уже типичные магнитарные поля могут искажать сферическую форму нейтронной звезды, ведь магнитное поле распределено в ней неравномерно. Нейтронные звезды могут быть немного вытянутыми вдоль магнитной оси, а могут быть сплюснутыми, что должно сказываться на том, как компактный объект вращается, поэтому есть надежда увидеть это в данных наблюдений. Кроме того, вращение такого несимметричного объекта (если магнитная ось не совпадает с осью вращения) должно приводить к испусканию гравитационных волн. Не исключено, что детекторы следующего поколения (например, так называемый Телескоп Эйнштейна) смогут зарегистрировать такие сигналы.
Итак, энергии вращения много. Часть можно успеть превратить в энергию магнитного поля, пока компактный объект молод и быстро вращается. А что дальше? Дальше магнитное поле может способствовать постепенному превращению энергии вращения в энергию излучения и улетающих с околосветовыми скоростями частиц. Так работают радиопульсары.
Типичный компактный объект этого типа рождается с вращательной энергией около 10 51эрг и магнитным полем 10 12–10 13Гс. Если энергию вращения расходовать медленно, то ее хватит очень надолго. Но пульсары так не умеют. Чем быстрее они вращаются, тем быстрее тормозятся. А значит, тем больше излучают. Светимости молодых пульсаров могут легко превосходить миллион светимостей Солнца. Часть этой энергии уносится электромагнитными волнами, поэтому мы видим такие объекты как яркие источники во всех диапазонах спектра – от радио- до гамма-. Однако, как мы упоминали, основная доля уносится быстро двигающимися (релятивистскими) заряженными частицами. Благодаря этому релятивистскому ветру вокруг многих молодых пульсаров мы видим красивые туманности – плерионы. Самым известным примером здесь является Крабовидная туманность. Если в ней «выключить» радиопульсар, то прекратится «накачка» энергии, и туманность постепенно погаснет.
В деталях механизм излучения пульсаров известен плохо, но его можно наглядно проиллюстрировать и даже получить качественно верное выражение для светимости, пользуясь очень простыми соображениями.
Мы уже рассматривали вращающийся шар и помним, что каждая частица шара вращается со скоростью, равной ω r , где r – расстояние от оси вращения. Иначе говоря, чем дальше частица, тем быстрее она вращается. Теперь представьте, что из шара торчат линии магнитного поля. Они жестко связаны с внешними слоями нейтронной звезды, так что вращаются с той же самой частотой (т. е. с тем же периодом). Теперь, как бусинку на проволоку, мы помещаем на линию магнитного поля частицу. Ее скорость вращения также равна ω r . Но мы уже рассматриваем вращение вне нейтронной звезды, а потому с ростом расстояния можем добраться до скорости света!
Ни частица, ни магнитная линия не могут вращаться со скоростью, превышающей световую. Значит, есть критическое расстояние, на котором замкнутая магнитосфера, заполненная заряженными частицами, перестает существовать. Поверхность, отстоящую от оси вращения на R l= c / ω, называют световым цилиндром. Вне светового цилиндра будут присутствовать только электромагнитные волны и релятивистские частицы, улетающие от нейтронной звезды. Они-то и уносят энергию вращения, т. е. тормозят пульсар. Теперь, качественно представив себе физическую картину, мы готовы получить формулу для светимости пульсара.
Светимость – это количество энергии, испускаемое в единицу времени. Энергия у нас запасается в магнитосфере внутри светового цилиндра, а характерное время испускания – период вращения (напомним, что P = 2π / ω). Сколько же у нас есть энергии? Снова воспользуемся произведением плотности энергии магнитного поля B 2/ 8π на объем, но теперь возьмем объем магнитосферы, а величину поля – на световом цилиндре (нас интересуют самые внешние области с большим объемом, которые могут участвовать в процессе излучения). С расстоянием поле спадает как куб радиуса. Пусть поле на поверхности нейтронной звезды с радиусом R 0равно B 0. Тогда для энергии получим:

Подставив выражение для радиуса светового цилиндра R l= c / ω, получим энергию (пренебрегая численными множителями):
Читать дальшеИнтервал:
Закладка: