Пол Халперн - Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность [litres]
- Название:Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность [litres]
- Автор:
- Жанр:
- Издательство:Литагент 5 редакция «БОМБОРА»
- Год:2019
- Город:М.
- ISBN:978-5-04-093386-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пол Халперн - Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность [litres] краткое содержание
Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
По странному совпадению, в следующем году Карл Андерсон и Сет Неддермайер, занимавшиеся анализом космического излучения, обнаружили в нем частицу, грубо соответствующую по массе теории Юкавы. Ее назвали мю-мезон или короче «мюон».
Увы, вскоре стало ясно, что мю-мезон не полностью годится на место мезона. Фактически, если попытаться с его помощью связать вместе частицы в ядре, все закончится неудачей. Мюоны даже не подвергаются сильному взаимодействию, они, по всей видимости, не играют особой роли, они просто существуют в космических лучах и рождаются в различных процессах.
Имея в виду такую бесцельность их существования, физик Исидор Раби задал свой известный вопрос: «Кто это заказал?»
Настоящая частица из схемы Юкавы, названная пи-мезоном или «пионом», была найдена в 1947 году во время другого эксперимента по анализу космического излучения. Пионы – массивные частицы короткого радиуса действия, которые отвечают на сильное взаимодействие и полностью вписываются в теорию. Прошли десятилетия, прежде чем ученые сообразили, что и эти штуки не являются фундаментальными, что по-настоящему механизм сильного взаимодействия включает глюоны, другой тип обменных частиц.
Уилер надеялся, что его полиэлектроны помогут создать модели мезонов и других частиц из космических лучей. Конструируя мезоны из строительных блоков в виде пар электрон-позитрон, он мечтал объяснить изобилие экзотических частиц и сил только с помощью знакомого всем электромагнетизма и банального электрона.
Как таблица Менделеева показывает, что химические элементы состоят из ядра и электронов, возможно, расположенные в определенном порядке полиэлектроны, думал он, помогут представить в таком же виде элементарные частицы. После открытия пионов Уилер сказал «Нью-Йорк Таймс»: «Все более повышается вероятность того, что все более тяжелые частицы состоят неким образом, каким, пока неясно, из позитивных и негативных электронов» 50.
Но он никогда не был человеком, который ставит все на одну лошадь, да и взгромоздить научную репутацию на спину умозрительной, недоказанной гипотезе, такой как полиэлектронная – не очень мудро.
Поэтому во второй половине сороковых и в начале пятидесятых Уилер опубликовал немало статей по более традиционным для ядерной физики и физики частиц темам: описания мюонных и пионных взаимодействий, дискуссии насчет источника космических лучей, анализ определенных процессов, в которых излучаются два фотона.
Как уважаемый «наследник» Нильса Бора и соавтор важнейшей статьи по ядерному распаду, благодаря которой во многом оказалось возможным создать бомбу, Уилер оказался очень востребован как в качестве публичного лектора, так и в разных правительственных комитетах. Он опубликовал несколько статей о будущем ядерной энергии, по теме, в которой он разбирался особенно хорошо. Он сочинил биографические тексты о Боре и о пионере американской физики Джозефе Генри, что отразило его растущий интерес к истории науки.
В сентябре 1946 года Бор приехал в Принстон, чтобы посетить конференцию «Будущее ядерной науки», совпавшую с двухсотлетием университета. Уилер был рад принять наставника в числе многих других известных физиков – Фейнмана, Раби, Ферми, Оппенгеймера и Дирака, и обсудить с ними послевоенные перспективы физической науки.
На конференции Фейнман получил шанс коротко переговорить с Дираком по поводу приложения принципа наименьшего действия к квантовой механике, что было в конечном итоге продолжением работы британца. Дирак выслушал, но остался при своем.
В комментариях по поводу конференции Ричард звучал по-уилеровски, поскольку он тоже стремился к упрощению физики частиц: «Что если фундаментальные частицы окажутся… более частицами или менее частицами? Или, возможно, все так называемые “различные” частицы вовсе не “различные” частицы, но разные состояния одной и той же частицы… Нам нужен интуитивный скачок к математическому формализму, точно такой же, какой произошел в теории электрона Дирака; нам нужен удар гения» 51.
Одной из тем для дискуссий 52стал поток государственных и корпоративных денег, пролившийся на науку, и его возможное разлагающее влияние – многие участники утверждали, что физикам необходимо сражаться за независимость.
Уилер верил в гражданский долг, в то, что нужно поддерживать власть и во время войны, и во время мира. Он оставался в контакте с бывшими коллегами по Манхэттенскому проекту и торжественно заявлял, что, как ученый-ядерщик, он должен идти в ногу с прогрессом как в гражданской, так и в военной областях. Он умолял не повторить старой ошибки (по его мнению) – оставить в стороне военные исследования, а важные решения отдать на откуп политикам.
Физики, по его мнению, должны активно работать в области национальной обороны, чтобы предотвратить выбор, основанный на недостаточной информированности.
Фейнман, с другой стороны, полностью потерял вкус к работе на военных, и пусть он не был столь политически активен, как Роберт Уилсон, во многом он шел тем же путем. Уилсон отложил фундаментальные исследования и начал сотрудничать с армией для того, чтобы остановить Гитлера. Но когда он узнал, что нацисты не имели даже намека на бомбу, его интерес к этой теме испарился, и хотя он доработал до самого закрытия «Манхэттена», но уже без энтузиазма.
На всем протяжении войны Уилсону не терпелось вернуться к гражданской жизни, к изучению чудес физического мира. Фейнман чувствовал примерно то же самое, и пусть он не осудил атомную бомбардировку, он не имел никакого желания повторить подобное. Он всегда вежливо объяснял, что у него другие планы, и неизменно отклонял приглашения проконсультировать коллег в Лос-Аламосе и в других местах.
Разгадывать загадки природы ему нравилось много больше, чем изобретать новые способы массового уничтожения.
Мальчики Бете
После завершения Манхэттенского проекта у Фейнмана открылась масса возможностей для продолжения карьеры. Многие университеты были бы рады принять его в свой преподавательский состав, он мог вернуться к предложению из Висконсина, мог отправиться в Беркли, где работал его поклонник Оппенгеймер, а Раймонд Бирдж, глава физического факультета, хотя и долго тянул с официальным запросом, все же его сделал.
Тем не менее Ричард счел предложение Ханса Бете из Корнелла наиболее привлекательным. Он знал людей, занимавшихся в этом университете ядерными исследованиями, уважал их и верил, что их результаты помогут ему в собственной работе. Кроме того, учебный центр располагался в нескольких часах езды от Нью-Йорка, и это позволяло Ричарду поддерживать связи с семьей и посещать важнейшие из научных конференций.
Читать дальшеИнтервал:
Закладка: