Олег Власов - Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния

Тут можно читать онлайн Олег Власов - Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Литагент 5 редакция, год 2018. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния
  • Автор:
  • Жанр:
  • Издательство:
    Литагент 5 редакция
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-04-091272-8
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Олег Власов - Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния краткое содержание

Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния - описание и краткое содержание, автор Олег Власов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступным языком автор рассказывает, как математика определяет результаты в футболе. Как «тики-така» стала одной из самых эффективных тактик в истории? Каким образом букмекеры рассчитывают коэффициенты? А как можно их перехитрить?
«Футболоматика» объясняет, как лучшие клубы мира конвертируют статистические данные в выигранные матчи. Вы убедитесь, что точные науки – один из краеугольных камней современного футбола.

Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния - читать онлайн бесплатно полную версию (весь текст целиком)

Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния - читать книгу онлайн бесплатно, автор Олег Власов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Исследователи в Японии пошли еще дальше, чем ученые NASA [54] Hong, S. & Asai, T. Effect of panel shape of soccer ball on its flight characteristics. – Scientific Reports 4: 5068. . Они создали робота, который должен был систематически и с одинаковой силой бить по мячам Brazuca, Jabulani и еще нескольким видам. С каждым типом мяча проводили несколько испытаний, причем каждый раз мяч устанавливали с разной начальной ориентацией, чтобы нога робота попадала на разные панели. Когда он бил по мячу со скоростью 30 метров в секунду (очень сложный удар в профессиональном футболе), полет Jabulani сильно зависел от того, на какую часть покрышки пришелся удар. Исследователи установили цель в 25 метрах, заставили робота бить прямо, без подкрутки, и наблюдали, куда попадет мяч. В зависимости от ориентации Jabulani место контакта с целью могло отличаться на два метра – очень большая вариация, если вы хотите попасть в ворота высотой 2,44 м. Brazuca показал более стабильные результаты, а изменение первоначальной ориентации незначительно влияло на точку контакта с целью. Однако такую же стабильность проявил и традиционный мяч из 32 панелей – его исследователи тоже протестировали. Как показал робот-футболист, старый добрый мяч FIFA так же надежен, как и Brazuca, состоящий из шести панелей.

Удача, структура и магия

У меня есть причина закончить первую часть этой книги на мужском объятии Златана. Хотя его гол свечкой через себя можно рассматривать математически, я не пытался низвести гениальность Златана до уровня уравнений. Его потрясающий удар и реакция Коллимора напоминают нам о том, что не стоит сводить прекрасную игру к математике и науке.

В пяти главах, которые мы провели на поле, я рассмотрел различные аспекты футбола, используя комбинацию случайности и структуры.

Случайность прокладывает нам долгий путь в объяснении целей и измерении совершенства; структура позволяет нам контролировать пространство как в атаке, так и в обороне и измерять динамику передач в полузащите. Вне футбола аналогичные подходы работают для рыб и львов, прогноза погоды, климатических изменений и бегунов на 100 метров, запусков мяча в небо и ракет в космос, а также пинков лошади, несчастных случаев и рака. Мы назвали лишь несколько из тысяч и тысяч примеров. В биологии, социологии и метеорологии математические аналогии позволяют нам ясно видеть, как возникают случайность и структура. Математика и наука – мощные инструменты, но могут ли они объяснить все?

Я наблюдал за голом Златана по телевизору дома вместе с моей семьей. Моя жена-шведка взмыла в воздух, крича от радости, и исполнила заслон кун-фу. Моя дочь с восторгом смотрела на маму, улыбаясь и закрывая уши руками, чтобы уменьшить шум. Мой сын зарыдал, проклиная Златана и всхлипывая, что к этому голу привела замена его любимого Стивена Джеррарда. Эти сцены – в моей гостиной, на поле, на стадионе «Френдс Арена», где даже английские болельщики аплодировали, и по всей Швеции – отражают страсть к игре, которая не является ни случайной, ни структурированной. Это было просто нечто волшебное.

Гол Златана должен остаться необъяснимым (хотя бы частично) – так же как и гол Руни через себя в ворота «Манчестер Сити», проход Гиггза в матче с «Арсеналом» и гол Бекхэма «Уимблдону» с центра поля. Мы никогда не сможем выразить формулами второй гол Марадоны в ворота Англии на чемпионате мира 1986 года; или «gol de placa» [55] Гол, достойный мемориальной доски ( прим. пер. ). Пеле в 1961 году, когда он пробежал все поле, чтобы забить на «Маракана». Статистические закономерности в забитых голах Месси и Роналду не отменяют удивительного разнообразия способов того, как они эти голы забивали. Капитуляция Бразилии за 20 минут в полуфинале чемпионата мира 2014 года против Германии; две минуты, за которые Эдин Джеко и Серхио Агуэро завоевали титул для голубой части Манчестера впервые за 44 года; «You’ll Never Walk Alone» в перерыве финального матча в Стамбуле, после чего «Ливерпуль» отыграл три мяча – все эти примеры могут быть частично объяснены логикой и аргументами, но они всегда будут сохранять элемент легендарности.

Математика и наука дают нам преимущество. Мы можем использовать научные инструменты для выявления закономерностей и приручения случайности. Каждый раз, когда мы применяем математическую модель, мы получаем более четкое представление о том, как работает мир. Но математики и ученые должны признать свои пределы: в футболе, да и в остальной жизни, всегда найдутся вещи, которые мы не можем полностью объяснить. Это не должно нас беспокоить. Этому необходимо радоваться. Каждое действие на футбольном поле всегда будет оставаться уникальной комбинацией удачи, структуры и магии. Все вместе они делают футбол тем, чем он является.

Часть II

На тренерской скамье

Глава 6

Три очка для тренера с мозгами голубя

Когда я был мальчиком, я не был фанатом Джимми Хилла [56] Джеймс Хилл (1928–2015) – английский футболист; с 1973 по 1988 год был ведущим программы Match of the Day ( прим. пер. ). . Я рос в Данфермлине, Шотландия, и был едва ли не единственным англичанином в школе. Хилл был, как мне много раз объясняли, воплощением всех плохих качеств англичан. Он был напыщен, чрезмерно уверен в себе и еще более самодоволен. Каждую неделю в своей программе Match of the Day он раздавал советы, которые были созданы для того, чтобы раздражать и злить публику. На чемпионате мира 1982 года Хилл совершил свой самый большой ляп, когда назвал потрясающий гол Дэвида Нейри [57] Дэвид Нейри – шотландский футболист, игравший на позиции центрального защитника ( прим. пер. ). в ворота Бразилии «ударом с пыра». Звездный миг Шотландии был разрушен этим самонадеянным англичанином, а Бразилия выиграла со счетом 4:1. На протяжении следующих десяти лет мне приходилось выслушивать истории о том, каким идиотом был Хилл, обычно в такой манере, будто я лично причастен к его злодеяниям.

Хилл – прекрасный пример «эксперта». Его телевизионные анализы никогда не потворствовали страстям или чувствам поклонников, а были сфокусированы на том, что он считал сутью. Он был логичным и рациональным, и у него, казалось, была непогрешимая вера в его собственные рассуждения – по крайней мере так это выглядело по телевизору. Мое собственное воспитание заставляло меня сомневаться в Хилле. Я любил математику, поэтому верил в силу рациональности и тщательно упорядоченную мысль. Но в жизни есть место не только логике. Есть место и чувству, которое ощущает девятилетний мальчик, когда видит, как маленькая страна ведет в счете в матче против футбольной нации всех времен. В этом должно быть что-то стоящее!

Теперь же, находясь в еще большем смятении, я собираюсь защищать Джимми Хилла. Не его образ на экране, а ту работу за кулисами, которая внесла стратегические изменения в футбол. В конце 1970-х он продвигал идею давать три очка за победу в матче вместо двух. В Англии его предложение было принято в 1981 году, и в течение следующих десяти лет переход на трехочковую систему совершили в Турции, Греции, Скандинавских странах, Италии и Ирландии. В 1994 году и Шотландия наконец последовала этому примеру, а в 1995 году FIFA приняла трехочковую систему за стандарт.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Олег Власов читать все книги автора по порядку

Олег Власов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния отзывы


Отзывы читателей о книге Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния, автор: Олег Власов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x