Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением

Тут можно читать онлайн Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство КоЛибри, Азбука-Аттикус, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Число, пришедшее с холода. Когда математика становится приключением
  • Автор:
  • Жанр:
  • Издательство:
    КоЛибри, Азбука-Аттикус
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-389-14486-6
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением краткое содержание

Число, пришедшее с холода. Когда математика становится приключением - описание и краткое содержание, автор Рудольф Ташнер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания.
«Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой. Числа были изобретены для того, чтобы упорядочить мир и сделать его обозримым. Числа — наши слуги, а отнюдь не господа. Числа — не фундамент бытия, но удобные обозначения, облегчающие понимание мира».

Число, пришедшее с холода. Когда математика становится приключением - читать онлайн бесплатно ознакомительный отрывок

Число, пришедшее с холода. Когда математика становится приключением - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Рудольф Ташнер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Размер Вселенной Архимед, надо сказать, оценил весьма щедро — и, как мы уже знаем, ошибочно — ибо в своих расчетах опирался на данные Аристарха о расстоянии от Земли до Солнца. По мнению Аристарха, Солнце удалено от Земли на расстояние, в 19 раз превышающее расстояние от Земли до Луны. Таким образом, по Аристарху, расстояние от Земли до Солнца равно произведению расстояния до Луны — 400 тысяч километров — на двадцать, что в результате дает восемь миллионов километров. Архимед предположил, что Вселенная заведомо уместится в куб, ребро которого в миллион раз больше расстояния от Земли до Солнца. То есть длина ребра равна восьми триллионам километров. Еще больше куб с ребром длиной десять триллионов километров. Из этого числа и исходил Архимед. Объем такого куба равен одному секстиллиарду кубических километров, или 1039 кубических километров, или единице с тридцатью девятью нулями.

В одном кубическом миллиметре умещается миллион, или 106, песчинок. Поскольку в одном кубическом метре содержится один миллиард кубических миллиметров, или 109, а в кубическом километре — один миллиард, или 109, кубических метров, то песчаное число Архимеда равно 106 × 109 × 109 × 1039. Это число равно 1063, или, иными словами, одному дециллиарду.

На самом деле Архимеда интересовало не само точное песчаное число. Своими вычислениями он хотел достичь двоякой цели.

Первое: способ написания греками чисел, при котором буквы алфавита служили одновременно символами чисел, мешал обозначению огромных чисел. Архимед поставил себе задачу обозначить дециллиард, для чего создал собственную систему счисления. Он ввел единицу «мириада», от греческого слова μυρίος, обозначающего нечто бесчисленное. В системе счисления Архимеда это число соответствовало десяти тысячам. Возводя мириаду в разные степени, Архимед смог без использования нуля, существование которого, как ни странно, было ему неизвестно, обозначать — по крайней мере, словесно — любое сколь угодно большое число.

Второе: дециллиард, по мнению Архимеда, было самым большим числом во Вселенной. Оперировать бо́льшими числами невозможно. Однако в математике, как был убежден Архимед, существуют и намного бо́льшие числа. Сам Архимед в одном из сочинений о песчаном числе упоминает громадное число 1080 000 000 000 000 000, то есть число, выраженное единицей с восемьюдесятью квадриллионами нулей, — но даже и это немыслимое и невообразимое число является, с точки зрения математика, малым . Ибо, с математической точки зрения, малым является любое число. Начиная с единицы, до любого числа можно перечислить лишь конечное число чисел, но за достигнутым числом находится бесконечное множество следующих чисел, которые еще предстоит перечислить.

Было бы интересно и занимательно выполнить оценку, подобную той, какую выполнил Архимед; при этом мы не станем прибегать к песчинкам и не станем пользоваться заниженным Аристархом размером Солнечной системы, а будем пользоваться наименьшими и наибольшими длинами, известными современной физике. Если скомбинировать гравитационную постоянную, являющуюся со времен Ньютона и Эйнштейна мерой силы тяжести, скорость света, являющуюся со времен Максвелла и Эйнштейна мерой всех электродинамических процессов, и квант действия, который со времен Планка и Бора является точкой отсчета квантовой теории, то мы получим так называемую планковскую длину (естественную единицу длины), которая равна 0,000 000 000 000 000 000 000 000 000 000 000 016 162 метра. Обычно это число записывают в краткой форме: 1,6162 × 10–35 метра, ибо первая, отличная от нуля цифра, единица, стоит на тридцать пятом месте после запятой. Теперь мы подсчитаем, сколько «кубиков» с «ребром», равным 10–35 метра, может уместиться во Вселенной, горизонт событий которой удален от нас на расстояние 50 миллиардов световых лет. То есть мы можем принять, что Вселенная представляет собой «куб» с «ребром», равным 100 миллиардам световых лет. Так как 100 миллиардов световых лет чуть меньше расстояния в километрах, выраженного произведением 100 миллиардов на 10 триллионов, то есть 1011 × 1013 × 10³ метров, то его можно принять за 1011 + 13 + 3 = 1027 метров. Объем такого куба равен 1027 × 3, то есть 1081 кубическим метрам. «Кубик Планка» с «ребром», равным 10–35 метра, имеет объем 10–35 × 3, то есть 10–105 кубических метра. Таким образом, во Вселенной умещается не больше 1081 + 105, или 10186 «кубиков Планка», или один унтригинтиллион. За единицей следуют 186 нулей. Это, если угодно, современное «песчаное число».

Можно поиграть в такую же — воображаемую — игру со временем. Существует не только планковская длина, но и планковское время, наименьшая имеющая физический смысл единица измерения времени, равная приблизительно 5 × 10–44 секунды. Насколько мы знаем, Вселенная возникла 13,8 миллиарда лет назад, что в секундах соответствует величине около 5 × 1017 секунд. Таким образом, вся история Вселенной умещается во временной промежуток, равный 1017 + 44, или 1061, планковским мгновениям, или, в словесной форме, десяти дециллионам таких мгновений. Удивительно, но это число составляет лишь одну сотую часть песчаного числа Архимеда.

Как только человек начинает считать большими числами, он немедленно теряет скромность…

Надо учиться оценивать, а не считать

Но вернемся, однако, в обыденный мир. Конечно, с нашей повседневной жизнью астрономические величины не имеют ничего общего, но размышления о том, как Архимед и современные ему эпигоны работали с приблизительными оценками, представляют интерес и помимо забавных историй о дециллионах и унтригинтиллионах. Умные головы всегда выделялись тем, что хорошо умели прикидывать порядок величин. Волшебником таких оценок был родившийся в Риме и умерший в 1954 г. в Чикаго физик-теоретик Энрико Ферми. На его примере можно научиться тому, что искусство применения математики заключается не в том, чтобы производить безошибочные расчеты, а скорее в том, чтобы минимизировать неизбежные ошибки, держать их, так сказать, в узде.

«Сколько в Чикаго настройщиков пианино?» — спросил однажды Ферми обескураженного таким вопросом студента. Естественно, студент не имел об этом ни малейшего понятия. Однако Ферми знал, как можно приблизительно оценить их число: в Чикаго проживают четыре миллиона человек. В одном домохозяйстве проживают в среднем четыре человека, а в каждом пятом домохозяйстве есть пианино. То есть в городе насчитывается двести тысяч этих музыкальных инструментов. Если каждое пианино надо настраивать один раз в четыре года, то ежегодно надо настраивать пятьдесят тысяч инструментов. Если настройщик за один день может настроить четыре пианино, то за 250 рабочих дней он настроит 1000 пианино в течение одного года. Значит, в Чикаго приблизительно 50 настройщиков пианино.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Рудольф Ташнер читать все книги автора по порядку

Рудольф Ташнер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Число, пришедшее с холода. Когда математика становится приключением отзывы


Отзывы читателей о книге Число, пришедшее с холода. Когда математика становится приключением, автор: Рудольф Ташнер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x