Михаил Никитин - Происхождение жизни. От туманности до клетки

Тут можно читать онлайн Михаил Никитин - Происхождение жизни. От туманности до клетки - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент Альпина, год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Михаил Никитин - Происхождение жизни. От туманности до клетки краткое содержание

Происхождение жизни. От туманности до клетки - описание и краткое содержание, автор Михаил Никитин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Происхождение жизни. От туманности до клетки - читать онлайн бесплатно ознакомительный отрывок

Происхождение жизни. От туманности до клетки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Михаил Никитин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Таким образом сравнение современных мембран ничего нам не дает для понимания - фото 123

Таким образом, сравнение современных мембран ничего нам не дает для понимания их общего предкового состояния – все основные компоненты отличаются вплоть до полной несовместимости. Одна из крайних точек зрения, высказанная Мартином и Расселом (Martin, Russell, 2007), заключается в том, что последний общий предок не имел мембран вовсе и современные мембраны были изобретены независимо предками бактерий и архей при выходе из минеральных каверн.

Другая крайняя точка зрения основана на обнаружении жирных кислот в метеоритах и в условиях опыта Миллера. Согласно ей примитивные мембраны, состоящие из абиогенно синтезированных жирных кислот, существовали еще на заре мира РНК, до появления белков. Обе эти крайности, скорее всего, неверны. В реконструированном арсенале белков LUCA есть несколько мембранных белков, таких как роторная мембранная АТФаза и система секреции белков III типа. Они не могли бы сформироваться без существования хоть каких-нибудь мембран. Абиогенные жирные кислоты же обладают большим разбросом в длине углеводородной цепи, и поэтому из их смеси получаются крайне непрочные мембраны. Вахтерхойзер предполагал, что LUCA имел смесь липидов с обоими изомерами глицерола, а бактерии и археи унаследовали по одному типу из этих двух (Wächtershäuser, 2006). Однако, когда такие мембраны были получены искусственно, оказалось, что липиды с разными изомерами глицерола быстро разделяются на «острова», содержащие преимущественно один изомер из двух, а мембрана легко рвется по границам этих «островов».

Вопрос происхождения мембран также требует решения очередного парадокса «курицы и яйца»: современные мембраны непроницаемы для ионов металлов и заряженных органических молекул, таких как аминокислоты, и слабо пропускают сахара. Чтобы клетки могли поглощать органические вещества из внешней среды, мембрана содержит десятки видов транспортных белков. Клетка с мембраной без транспортных белков обречена на голод, а транспортные белки не могут возникнуть в отсутствие мембран. Хуже того, синтез мембранных белков в современных клетках требует участия мембранного белкового комплекса SRP, который связывается с рибосомой и помогает встроить в мембрану выходящую из нее белковую цепь. Без SRP участок пептида, который должен быть в мембране и состоит из неполярных аминокислот, просто застревает на выходе из рибосомы (Mulkidjanian, Galperin, Koonin, 2009)!

Информация о мембранах LUCA сохранилась в ферментах синтеза липидов

Если сами липиды бактерий и архей сильно различаются, вплоть до полной неузнаваемости, то некоторые ферменты, участвующие в их синтезе, довольно похожи. Синтез липидов состоит из многих этапов (рис. 15.4). Сначала образуются гидрофобные хвосты. Жирные кислоты собираются из ацетил-КоА, на каждом шаге синтеза молекула жирной кислоты присоединяет один ацетильный (СН 3-СО) фрагмент и вырастает на два атома углерода. Терпены тоже образуются из ацетил-КоА. На первой стадии из трех молекул ацетил-КоА образуется мевалоновая кислота, которая превращается в изопентил-пирофосфат с пятью атомами углерода. Потом из молекул изопентил-пирофосфата собираются более длинные терпены: геранил-пирофосфат, фарнезил-пирофосфат и геранилгеранил-пирофосфат, содержащие 10, 15 и 20 атомов углерода.

Глицеролфосфат получается из диоксиацетонфосфата и затем к нему - фото 124

Глицерол-фосфат получается из диоксиацетон-фосфата, и затем к нему присоединяются гидрофобные хвосты. Затем к фосфатной группе прикрепляется нуклеотид цитидин-дифосфат, а на последней стадии он заменяется на полярную головную группу – холин, этаноламин, серин или инозитол.

Новая информация о мембранах LUCA появилась в 2012 году, когда несколькими группами ученых был проведен подробный анализ истории генов всех ферментов биосинтеза всех компонентов липидов бактерий, архей и эукариот (Dibrova et al., 2012; Lombard, Lopez-Garcia, Moreira, 2012).

Краткие результаты исследования приведены в таблице 15.1.

Из таблицы видно что LUCA мог вопервых синтезировать терпеноспирты и - фото 125 Из таблицы видно что LUCA мог вопервых синтезировать терпеноспирты и - фото 126

Из таблицы видно, что LUCA мог, во-первых, синтезировать терпеноспирты и, во-вторых, пришивать полярные головы к спиртам. Как синтез глицеролфосфата, так и синтез жирных кислот возникли лишь после разделения линий бактерий и архей. Следовательно, проще всего предположить, что липиды LUCA состояли из одного остатка терпенового спирта, остатка фосфата и полярной группы (серин, этаноламин или инозитол) (рис. 15.5). Подобные липиды были синтезированы искусственно. Образующиеся из них мембраны по сравнению с современными обладают высокой подвижностью, текучестью, хорошо пропускают ионы металлов и малые органические молекулы. Это позволяло древним протоклеткам поглощать готовую органику из внешней среды даже без специальных транспортных белков.

Дополнительным аргументом в пользу большей древности терпенов по сравнению с - фото 127

Дополнительным аргументом в пользу большей древности терпенов по сравнению с жирными кислотами в мембранах являются особенности путей синтеза тех и других. Длинные цепи жирных кислот синтезируются одним ферментным комплексом путем последовательного добавления двухуглеродных «кирпичиков» ацетил-КоА по одному. Для получения жирных кислот одинаковой длины (а следовательно, и прочной мембраны) нужны достаточно точные и совершенные ферменты. Терпены же синтезируются из более крупных пятиуглеродных строительных блоков изопентилпирофосфата, которые сначала собираются в десятиуглеродные молекулы геранилпирофосфата, а затем при помощи других ферментов – в более длинные спирты (фарнезол, геранилгераниол, кальдархеол, фитол и др.). Требования к точности и специфичности ферментов при такой крупноблочной сборке гораздо ниже.

Происхождение первых мембранных белков

Не все белки попадают в мембраны при помощи комплекса SRP. Бывают белки, которые синтезируются в одной клетке, а встроиться в мембрану должны в другой, как некоторые бактериальные токсины. Такие белки, чтобы встроиться в мембрану, используют механизм «выворачивания». Для этого белок не должен иметь участков, состоящих только из гидрофобных аминокислот. Неполярные аминокислоты, которые окажутся внутри мембраны, должны чередоваться с полярными примерно 2 аминокислоты через 2. Такой белок может выходить из рибосомы без помощи SRP и достаточно растворим в воде. Чередование «2 через 2» создает альфа-спиральные участки, у которых один бок полярный, а другой неполярный (обсуждалось в главе 13). В водорастворимой форме такой белок сворачивается неполярными участками внутрь, а попадая на мембрану, разворачивается по ней плоско. Затем его альфа-спирали могут опять собраться компактно, но уже гидрофобными участками наружу. Гидрофильные стороны спиралей образуют при этом пору в мембране, через которую могут проходить вода, ионы, полярные молекулы и даже белки и ДНК.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Михаил Никитин читать все книги автора по порядку

Михаил Никитин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Происхождение жизни. От туманности до клетки отзывы


Отзывы читателей о книге Происхождение жизни. От туманности до клетки, автор: Михаил Никитин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x