РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
- Название:Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
- Автор:
- Жанр:
- Издательство:Альпина Паблишер
- Год:2007
- ISBN:ISBN 978-5-9614-0610-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Существует ошибочное представление, что проигрышей можно полностью избежать, если провести достаточно эффективную диверсификацию. До некоторой степени верно, что проигрыши можно смягчить посредством эффективной диверсификации, но их никогда нельзя полностью исключить. Не вводите себя в заблуждение. Не имеет значения, насколько хороша применяемая система, не имеет значения, как эффективно вы проводите диверсификацию, вы все равно будете сталкиваться со значительными проигрышами. Причина этого не во взаимной корреляции ваших рыночных систем, поскольку бывают периоды, когда большинство или все рыночные системы портфеля работают против вас, когда, по вашему мнению, этого не должно происходить. Попробуйте найти портфель с пятилетними историческими данными, чтобы все торговые системы работали бы при оптимальном f и при этом максимальный убыток был бы менее 30%! Это будет непросто. Не имеет значения, сколько при этом рыночных систем используется. Если вы хотите все сделать математически правильно, то надо быть готовым к проигрышу от 30 до 95% от баланса счета. Необходима строжайшая дисциплина, и далеко не все могут ее соблюдать.
Как только трейдер отказывается от торговли постоянным количеством контрактов, он сталкивается с проблемой, каким количеством торговать. Это происходит всегда независимо от того, признает трейдер данную проблему или нет. Торговля постоянным количеством контрактов не является решением, так как таким образом никогда нельзя добиться геометрического роста. Поэтому, нравится вам это или нет, вопрос о том, каким количеством торговать в следующей сделке, будет неизбежен для всех. Простой выбор случайного количества может привести к серьезной ошибке. Оптимальное f является единственным математически верным решением.
Современная теория портфеля
Вспомните ситуацию с оптимальным f и проигрышем рыночной системы. Чем лучше рыночная система, тем выше значение f. Однако если вы торгуете с оптимальным f, проигрыш (исторически) никогда не может быть меньше f. Вообще говоря, чем лучше рыночная система, тем больше будут промежуточные проигрыши (в процентах от баланса счета), если торговать при оптимальном f. Таким образом, если вы хотите достичь наибольшего геометрического роста, то должны быть готовы к серьезным проигрышам на своем пути.
Эффективная диверсификация, путем включения в портфель других рыночных систем, является лучшим способом, которым можно смягчить этот проигрыш и преодолеть его, все еще оставаясь близко к пику кривой f (то есть не уменьшая f, скажем, до f/2). Когда одна рыночная система приносит убыток, другая приносит прибыль, тем самым смягчая проигрыш первой. Это также оказывает большое влияние на весь счет. Рыночная система, которая только что испытала проигрыш (и теперь возвращается к хорошей работе), будет иметь не меньше средств, чем до убытка (благодаря тому, что другая рыночная система аннулировала проигрыш). Диверсификация не будет сдерживать прирост системы (наоборот, движение вверх будет быстрее, так как после проигрыша вы не начнете с меньшего числа контрактов), при этом она смягчает понижение баланса (но только до очень ограниченной степени). Можно рассчитать оптимальный портфель, состоящий из различных рыночных систем с соответствующими оптимальными f. Хотя мы не можем быть полностью уверены, что оптимальный в прошлом портфель будет оптимальным и в будущем, это все же более вероятно, чем то, что прошлые оптимальные параметры системы будут оптимальными или приблизительно оптимальными в будущем. В то время как оптимальные параметры системы с течением времени меняются довольно быстро, веса отдельных систем в оптимальном портфеле меняются очень медленно (как и значения оптимальных f). Вообще, корреляция между рыночными системами достаточно стабильна. Эта новость будет еще более приятна для трейдера, если он уже нашел такой оптимально смешанный портфель.
Модель Марковица
Основные концепции современной теории портфеля изложены в монографии, написанной доктором Гарри Марковицем. Первоначально Марковиц предположил, что управление портфелем является проблемой структурного, а не индивидуального выбора акций, что обычно практикуется. Марковиц доказывал, что диверсификация эффективна только тогда, когда корреляция между включенными в портфель рынками имеет отрицательное значение. Если у нас есть портфель, составленный из одного вида акций, то наилучшая диверсификация достигается в том случае, если мы выберем другой вид акций, которые имеют минимально возможную корреляцию с ценой первой акции. В результате этого. портфель в целом (если он состоит из этих двух видов акций с отрицательной корреляцией) будет иметь меньшую дисперсию, чем любой вид акций, взятый отдельно. Марковиц предположил, что инвесторы действуют рациональным способои и при наличии выбора предпочитают портфель с меньшим риском при равном уровне прибыльности или выбирают портфель с большей прибылью, при одинаковом риске. Далее Марковиц утверждает, что для данного уровня риска есть оптимальный портфель с наивысшей доходностью, и таким же образом для данного уровня доходности есть оптимальный портфель с наименьшим риском. Портфель, доходность которого может быть увеличена без сопутствующего увеличения риска или портфель, риск которого можно уменьшить без сопутствующего уменьшения доходности, согласно Марковицу, неэффективны.
Рисунок 1-7 показывает все имеющиеся портфели, рассматриваемые в данном примере. Если у вас портфель С, то лучше заменить его на портфель А, где прибыль такая же, но с меньшим риском, или на портфель В, где вы получите большую прибыль при том же риске. Описывая эту ситуацию, Марковиц ввел понятие «эффективная граница» (efficient frontier). Это набор портфелей, которые находятся в верхней левой части графика, то есть портфели, прибыль которых больше не может быть увеличена без увеличения риска, и риск которых не может быть уменьшен без уменьшения прибыли. Портфели, находящиеся на эффективной границе, называются эффективными портфелями (см. Рисунок 1-8). Портфели, которые находятся вверху справа и внизу слева, в целом недостаточно диверсифицированы по сравнению с другими портфелями. Те же портфели, которые находятся в середине эффективной границы, обычно очень хорошо диверсифицированы. Выбор портфеля инвестором зависит от степени неприятия риска инвестором — иначе говоря, от желания взять на себя риск. В модели Марковица любой портфель, который находится на эффективной границе, является хорошим выбором, но какой именно портфель выберет инвестор — это вопрос личного предпочтения (позднее мы увидим, что есть точное оптимальное расположение портфеля на эффективной границе для всех инвесторов).
Читать дальшеИнтервал:
Закладка: