РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В = оптимальное f в долларах.

Не обязательно использовать дневные данные, можно использовать любой вре­менной период, при условии, что он одинаковый для всех компонентов портфеля (тот же временной период должен использоваться для определения коэффициен­тов корреляции между HPR различных компонентов). Скажем, рыночная систе­ма с оптимальным f= 2000 долларов за день заработала 100 долларов. Тогда для такой рыночной системы дневное HPR = 1,05.

Если вы рассчитываете оптимальное f на основе приведенных данных, то для получения дневных HPR следует использовать уравнение (2.12);

где D изменение цены 1 единицы в долларах по сравнению с прошлым днем те - фото 240

где D$ = изменение цены 1 единицы в долларах по сравнению с прошлым днем, т.е. (закрытие сегодня - закрытие вчера) * доллары за пункт;

f$ = текущее оптимальное f в долларах, рассчитанное из уравнения (2.11). Здесь текущей ценой является зак­рытие последнего дня.

После того как вы определите оптимальное f в долларах для 1 единицы компонен­та, надо взять дневные изменения баланса на основе 1 единицы и преобразовать их в HPR с помощью уравнения (1.15). Если вы используете приведенные дан­ные, воспользуйтесь уравнением (2.12). Когда вы комбинируете рыночные систе­мы в портфеле, все они должны иметь одинаковый формат, т.е. если данные при­ведены к текущим ценам, то оптимальные f и побочные продукты также должны быть приведенными.

Вернемся к арифметическому среднему HPR. Вычитая единицу из арифмети­ческого среднего, мы получим ожидаемую прибыль компонента. Дисперсия дневных (недельных, месячных и т.д.) HPR даст исходную дисперсию для матри­цы. Наконец, для каждой пары рассматриваемых рыночных систем рассчитаем коэффициенты корреляции между дневными HPR.

Теперь можно сделать важное заключение. Портфели, параметры которых (ожидаемые прибыли, дисперсия ожидаемых прибылей и коэффициенты корреляции ожидаемых прибылей) выбраны на основе текущей цены компонента, не будут ис­тинно оптимальными портфелями. Для определения истинно оптимального портфе­ля следует использовать входные параметры, основанные на торговле 1 единицей при оптимальном/для каждого компонента. Вы не можете быть ближе к пику кривой оптимального f, чем само оптимальное f. Рассчитывая параметры из текущей ры­ночной цены компонента, вы выбираете параметры произвольно, следовательно, они не обязательно оптимальны.

Вернемся к вопросу о том, каким образом возможно инвестировать больше 100% в определенный компонент. Одно из основных утверждений этой книги со­стоит в том, что вес и количество не одно и то же. Вес, который вы получаете при нахождении геометрического оптимального портфеля, должен быть отражен в оптимальных f компонентов портфеля. Для этого следует разделить оптимальное f каждого компонента на его соответствующий вес. Допустим, у нас есть следую­щие оптимальные f (в долларах):

Toxico $2500

Incubeast $4750

LA Garb $5000

(Отметьте, что если вы приводите данные к текущей цене и, следовательно, полу­чаете приведенное оптимальное f и побочные продукты, тогда ваше оптимальное f в долларах будет меняться каждый день в зависимости от цены закрытия преды­дущего дня на основании уравнения [2.11].)

Теперь разделим f на соответствующие веса:

Toxico $2500 / 1,025982 = $2436,69

Incubeast $4750 / 0,4900558 = $9692,77

LA Garb $5000 / 0,4024979 = $12 422,43

Таким образом, используя новые «отрегулированные» значения f, мы получаем гео­метрический оптимальный портфель. Допустим, Toxico представляет определен­ную рыночную систему. Торгуя 1 контрактом в этой рыночной системе на каждые 2436,69 долларов на счете (и поступая таким же образом с новыми отрегулирован­ными значениями f других рыночных систем), мы будем торговать геометричес­ким оптимальным неограниченным портфелем. Если Toxico является акцией и мы считаем 100 акций «I контрактом», то следует торговать 100 акциями Toxico на каждые 2436,99 доллара на балансе счета. Пока мы не будем учитывать залоговые средства. В следующей главе мы рассмотрим проблему требований к залоговым средствам.

«Минутку, — можете возразить вы. — Если мы изменим оптимальный порт­фель посредством оптимального f, будет ли он оптимальным. Если новые значе­ния относятся к другому портфелю, то ему соответствует другая координата при­были, и он может не оказаться на эффективной границе».

Заметьте, мы не изменяем значения f. Мы просто сокращаем расчеты, и это выглядит так, как будто значения f изменяются. Мы создаем оптимальные порт­фели, основываясь на ожидаемых прибылях и дисперсии прибылей при торгов­ле одной единицей каждого компонента, а также на коэффициентах корреля­ции. Таким образом, мы получаем оптимальные веса (оптимальный процент счета для торговли каждым компонентом). Поэтому, если рыночная система имеет оптимальное f = 2000 долларов и ее вес в оптимальном портфеле равен 0,5, мы должны использовать для этой рыночной системы 50% счета при пол­ном оптимальном f= 2000 долларов. Это то же самое, что торговать 100% наше­го счета при оптимальном f, деленном на оптимальный вес, т.е. ($2000 /0,5) = $4000. Другими словами, торговать оптимальным f= 2000 долларов на 50% счета, по сути, то же самое, что и торговать измененным f= 4000 долларов на 100% счета.

AHPR и SD, которые вы вводите в матрицу, определяются из значений опти­мального f в долларах. Если речь идет об акциях, то можно рассчитать значения AHPR, SD и оптимального f на основе одной акции или, например, 100 акций, вы сами определяете размер одной единицы.

В ситуации, когда нет рычага (например, портфель акций без заемных средств), вес и количество одно и то же. Однако в ситуации с рычагом (например, портфель фьючерсных рыночных систем), вес и количество отличаются. Идея, которая была впервые изложена в книге «Формулы управления портфелем», состо­ит в том, что мы пытаемся найти оптимальное количество, и оно является функци­ей оптимальных весов. Когда мы рассчитываем коэффициенты корреляции HPR двух рыночных сис­тем с положительными арифметическими математическими ожиданиями, то чаще всего получаем положительные значения. Это происходит потому, что кривые баланса рыночных систем (совокупная текущая сумма дневных измене­ний баланса) стремятся вверх и вправо. Проблема решается следующим обра­зом: для каждой кривой баланса надо определить линию регрессии методом наименьших квадратов (до приведения к текущим ценам, если оно применяет­ся) и рассчитать разность кривой баланса и ее линии регрессии в каждой точке. Затем следует преобразовать уже лишенную тренда кривую баланса в простые дневные изменения баланса. После этого вы можете привести данные к теку­щим ценам (когда это необходимо). Далее, рассчитайте корреляцию по этим уже обработанным данным. Предложенный метод работает в том случае, если вы используете корреляцию дневных изменений баланса, а не цен. Если вы будете использовать цены, то мо­жете получить искаженную картину, хотя очень часто цены и дневные изменения баланса взаимосвязаны (например, в системе пересечения долгосрочной скользя­щей средней). Метод удаления тренда следует всегда применять аккуратно. Разу­меется, дневное AHPR и стандартное отклонение HPR должны всегда рассчиты­ваться по данным, из которых не удален тренд.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x