РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(7.02) P=SX/ST,

где SX = координата стандартного отклонения определенной точ­ки на линии CML;

ST = координата стандартного отклонения касательного портфеля;

Р= процент активов, которые необходимо инвестировать в касательный портфель, чтобы быть на линии CML для данного значения SX.

Таким образом, если значение стандартного отклонения точки на линии CML (0,08296) из последней строки таблицы разделить на значение стандартного от­клонения касательного портфеля (0,02986), мы получим 2,7782, что соответствует 277,82%.

В последнем столбце таблицы показано AHPR линии CML при данной коорди­нате стандартного отклонения. Оно рассчитывается следующим образом:

где ACML AHPR линии CML при данной координате риска или соответствующем - фото 217

где ACML = AHPR линии CML при данной координате риска, или соот­ветствующем проценте, рассчитанном из (7.02);

AT =значение AHPR касательной точки, полученное из (7.01а);

Р= процент в касательном портфеле, рассчитанный из (7.02);

RFR= безрисковая ставка.

Стандартное отклонение определенной точки на линии CML для данного AHPR рассчитывается следующим образом:

(7.04) SD=P*ST,

где SD = стандартное отклонение в данной точке на линии CML при определенном проценте Р, соответствующем данному AHPR;

Р = процент в касательном портфеле, рассчитанный из (7.02);

ST = значение стандартного отклонения касательного портфеля.

Геометрическая эффективная граница

Особенность рисунка 7-1 состоит в том, что он отображает арифметическое сред­нее HPR. Если прибыли реинвестируются, то для координаты эффективной гра­ницы по оси Y правильнее рассматривать геометрическое среднее HPR. Такой

подход многое меняет. Формула для преобразования точки на эффективной гра­нице из арифметического HPR в геометрическое такова:

где GHPR геометрическое среднее HPR AHPR арифметическое среднее HPR V - фото 218

где GHPR = геометрическое среднее HPR;

AHPR = арифметическое среднее HPR;

V= координата дисперсии (она равна координате стандартного отклонения в квадрате).

Рисунок72 Эффективная граница с реинвестированием и без реинвестирования На - фото 219

Рисунок7-2 Эффективная граница с реинвестированием и без реинвестирования

На рисунке 7-2 показана эффективная граница, соответствующая арифметичес­ким средним HPR, и граница, соответствующая геометрическим средним HPR. Посмотрите, что происходит с эффективной границей при реинвестировании.

Построив линию GHPR, можно определить, какой портфель является геометрически оптимальным (наивысшая точка на линии GHPR). Вы може­те найти этот портфель, преобразовав AHPR и V каждого портфеля на эф­фективной границе AHPR в GHPR с помощью уравнения (7.05) и выбрав максимальное значение GHPR. Однако, зная AHPR и V портфелей, лежа­щих на эффективной границе AHPR, можно еще проще определить геомет­рический оптимальный портфель, он должен удовлетворять следующему уравнению:

(7.06a) AHPR-1-V=0,

где АН PR = арифметическое среднее HPR, т.е. координата Е дан­ного портфеля на эффективной границе;

V= дисперсия HPR, т.е. координата V данного портфеля на эффективной границе. Она равна стандартному отклонению в квадрате.

Уравнение (7.06a) также можно представить следующим образом:

(7.06б) AHPR - 1 = V

(7.06в) AHPR-V=1

(7.06г) AHPR=V+1

Необходимо сделать небольшое замечание по геометрическому оптимально­му портфелю. Дисперсия в портфеле в общем случае имеет положительную корреляцию с наихудшим проигрышем. Более высокая дисперсия обычно со­ответствует портфелю с более высоким возможным проигрышем. Так как гео­метрический оптимальный портфель является портфелем, для которого Е и V равны (при E=AHPR- 1), мы можем допустить, что геометрический опти­мальный портфель будет иметь высокие проигрыши. Фактически, чем боль­ше GHPR геометрического оптимального портфеля (т.е. чем больше зараба­тывает портфель), тем больше может быть его текущий проигрыш (откат по балансу счета), так как GHPR положительно коррелирован с AHPR. Здесь мы видим некий парадокс. С одной стороны нам следует использовать геометри­ческий оптимальный портфель, с другой — чем выше среднее геометрическое портфеля, тем большими будут откаты по балансу счета в процентном выра­жении. Мы знаем также, что при диверсификации следует выбирать порт­фель с наивысшим средним геометрическим, а не с минимальным проигры­шем, но эти величины стремятся в противоположных направлениях! Геомет­рический оптимальный портфель — это портфель, который расположен в точке, где линия, прочерченная из (0, 0) с наклоном 1, пересекает эффектив­ную границу AHPR.

Рисунок 7-2 показывает эффективные границы на основе одной сделки. Мы можем преобразовать геометрическое среднее HPR в TWR с помощью уравнения:

(7.07) GTWR = GHPR^ N,

где GTWR = значение вертикальной оси, соответствующее данному GHPR после N сделок;

N - число сделок, которые мы хотим использовать.

Рисунок73 Эффективная граница с реинвестированием и без реинвестирования - фото 220

Рисунок7-3 Эффективная граница с реинвестированием и без реинвестирования

Рисунок74 Эффективная граница с реинвестированием и без реинвестирования - фото 221

Рисунок7-4 Эффективная граница с реинвестированием и без реинвестирования

Пусть нашей целью будет AHPR при значении V, которое соответствует геометричес­кому оптимальному портфелю. В знаменателе (2.09а) мы используем среднее геомет­рическое геометрического оптимального портфеля. Теперь мы можем определить, сколько сделок необходимо для того, чтобы привести наш геометрический опти­мальный портфель к одной сделке арифметического портфеля:

N=ln(l,031)/ln(l,01542) =0,035294/0,0153023 = 1,995075

Таким образом, можно ожидать, что через 1,995075, или приблизительно через 2 сделки, оптимальное GHPR достигнет соответствующего (при том же V) AHPR для одной сделки. Здесь возникает проблема, которая заключается в том, что ATWR должно отражать тот факт, что прошли две сделки. Другими словами, когда GTWR приближается к ATWR, ATWR двигается вверх, хотя и с постоянной скоростью (в отличие от GTWR, которое ускоряется). Можно решить эту проблему с по­мощью уравнений (7.07) и (7.08) для расчета геометрического и арифметичес­кого TWR:

Так как мы знаем что когда N 1 G всегда меньше А можно перефразировать - фото 222

Так как мы знаем, что, когда N = 1, G всегда меньше А, можно перефразировать вопрос: «При скольких N G будет равно А?» Математически это будет выглядеть таким образом:

что можно представить следующим образом или или - фото 223

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x