РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Подставим значения в уравнение 606a стр 281 Таким образом при Е 014 - фото 202

Подставим значения в уравнение (6.06a) (стр. 281):

Таким образом, при Е = 0,14 самое низкое значение V = 0,0725872809.

Если мы захотим протестировать значение Е = 0,18, то снова начнем с рас­ширенной матрицы, только на этот раз правая верхняя ячейка будет равна 0.18.

X i X j COV i, j
0,12391 * 0,12391 * 0,1 0,0015353688
0,12391 * 0,12787 * -0,0237 -0,0003755116
0,12391 * 0,38407 * 0,01 0,0004759011
0,12391 * 0,36424 * 0 0
0,12787 * 0,12391 * -0,0237 -0,0003755116
0,12787 * 0,12787 * 0,25 0,0040876842
0,12787 * 0,38407 * 0,079 0,0038797714
0,12787 * 0,36424 * 0 0
0,38407 * 0,12391 * 0,01 0,0004759011
0,38407 * 0,12787 * 0,079 0,0038797714
0,38407 * 0,38407 * 0,4 0,059003906
0,38407 * 0,36424 * 0 0
0,36424 * 0,12391 * 0 0
0,36424 * 0,12787 * 0 0
0,36424 * 0,38407 * 0 0
0,36424 * 0,36424 * 0 0
0,0725872809

С помощью построчных операций получим единичную матрицу На этот раз в - фото 203

С помощью построчных операций получим единичную матрицу:

На этот раз в четвертой ячейке столбца ответов мы получили отрицательный - фото 204

На этот раз в четвертой ячейке столбца ответов мы получили отрицательный ре­зультат. Это означает, что нам следует инвестировать отрицательную сумму в размере 9,81% капитала в сберегательный счет. Чтобы решить проблему отрица­тельного X i(т.е. когда значение на пересечении строки i и крайнего правого столбца меньшее или равно нулю), мы должны удалить из первоначальной рас­ширенной матрицы строку i + 2 и столбец i и решить задачу для новой расши­ренной матрицы. Если значения последних двух строк крайнего правого столб­ца меньше или равны нулю, нам не о чем беспокоиться, поскольку они соответ­ствуют множителям Лагранжа и могут принимать отрицательные значения. Так как отрицательное значение переменной соответствует отрицательному весу четвертого компонента, мы удалим из первоначальной расширенной матрицы четвертый столбец и шестую строку. Затем используем построчные операции для проведения элементарных преобразований, чтобы получить единичную матрицу:

С помощью построчных операций получим единичную матрицу Когда вы удаляете - фото 205

С помощью построчных операций получим единичную матрицу:

Когда вы удаляете строки и столбцы важно помнить какие строки каким - фото 206

Когда вы удаляете строки и столбцы, важно помнить, какие строки каким пере­менным соответствуют, особенно когда таких строк и столбцов несколько. Допу­стим, нам надо найти веса в портфеле при Е = 0,1965. Единичная матрица, кото­рую мы сначала получим, будет содержать отрицательные значения для весов Toxico (X 1) и сберегательного счета (Х 4). Поэтому вернемся к нашей первоначаль­ной расширенной матрице:

Теперь удалим строку 3 и столбец 1 они относятся к Toxico а также удалим - фото 207

Теперь удалим строку 3 и столбец 1 (они относятся к Toxico), а также удалим стро­ку 6 и столбец 4 (они относятся к сберегательному счету):

Итак мы будем работать со следующей матрицей С помощью построчных операций - фото 208

Итак, мы будем работать со следующей матрицей:

С помощью построчных операций получим единичную матрицу Решить матрицу - фото 209

С помощью построчных операций получим единичную матрицу:

Решить матрицу можно также с помощью обратной матрицы коэффициентов Обратная - фото 210

Решить матрицу можно также с помощью обратной матрицы коэффициентов. Обратная матрица при умножении на первоначальную матрицу дает единичную матрицу. В матричной алгебре матрица часто обозначается выделенной заглавной бук­вой. Например, мы можем обозначить матрицу коэффициентов буквой С. Обрат­ная матрица помечается верхним индексом -1. Обратная матрица к С обозначает­ся как С -1.Чтобы использовать этот метод, необходимо определить обратную мат­рицу для матрицы коэффициентов. Для этого добавим к матрице коэффициентов единичную матрицу. В примере с 4 акциями:

Используя построчные операции преобразуем матрицу коэффициентов в единичную - фото 211

Используя построчные операции, преобразуем матрицу коэффициентов в еди­ничную матрицу. Так как каждая построчная операция, проведенная слева, будет проведена и справа, мы преобразуем единичную матрицу справа в обратную мат­рицу С -1.

Теперь мы можем умножить обратную матрицу С 1на первоначальный крайний правый - фото 212

Теперь мы можем умножить обратную матрицу С -1на первоначальный крайний правый столбец, который в нашем случае выглядит следующим образом:

При умножении матрицы на векторстолбец мы умножаем все элементы первого - фото 213

При умножении матрицы на вектор-столбец мы умножаем все элементы первого столбца матрицы на первый элемент вектора, все элементы второго столбца матрицы на второй элемент вектора, и так далее. Если бы вектор был вектор-строка, мы бы умножили все элементы первой строки матрицы на первый элемент вектора, все элементы второй строки матрицы на второй элемент вектора, и так далее. Так как речь идет о векторе-столбце и после­дние четыре элемента нули, нам надо умножить первый столбец обратной матрицы на Е (ожидаемая прибыль портфеля) и второй столбец обратной матрицы на S (сумма весов). Мы получим следующий набор уравнений, в ко­торые можно подставить значения Е и S и получить оптимальные веса.

Матричная алгебра включает в себя гораздо больше тем и приложений, чем было рассмотрено в этой главе. Существуют и другие методы матричной алгебры для ре­шения систем линейных уравнений. Часто вы встретите ссылки на правило Краме­ра, симплекс-метод или симплексную таблицу. Эти методы сложнее, чем методы, описанные в этой главе. Существует множество применений матричной алгебры в бизнесе и науке, мы же затронули ее настолько, насколько необходимо для наших це­лей. Для более подробного изучения матричной алгебры и ее применений в бизнесе и науке рекомендую прочитать книгу «Множества, матрицы и линейное программи­рование» Роберта Л. Чилдресса (Sets, Matrices, and Linear Programming, by Robert L. Childress). Следующая глава посвящена методам, уже рассмотренным в этой главе, приме­нительно к любому торгуемому инструменту с использованием оптимального f и ме­ханических систем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x