РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
I L S
Т -0,15 0,05 о
I 0,25 о
L о

На основе полученных параметров мы можем рассчитать ковариацию между дву­мя ценными бумагами:

Стандартные отклонения S aи S бможно найти взяв квадратный корень дисперсии - фото 177

Стандартные отклонения S aи S бможно найти, взяв квадратный корень диспер­сии ожидаемых прибылей для ценных бумаг а и б. Вернемся к нашему примеру. Мы можем определить ковариацию между Toxico (Т) и Incubeast (I) следующим образом:

Зная ковариацию и стандартные отклонения мы можем рассчитать коэффициент - фото 178

Зная ковариацию и стандартные отклонения, мы можем рассчитать коэффици­ент линейной корреляции:

Отметьте что ковариация ценной бумаги самой к себе является дисперсией так - фото 179

Отметьте, что ковариация ценной бумаги самой к себе является дисперсией, так как коэффициент линейной корреляции ценной бумаги самой к себе равен 1:

Теперь можно создать таблицу ковариаций для нашего примера с четырьмя - фото 180

Теперь можно создать таблицу ковариаций для нашего примера с четырьмя инве­стиционными альтернативами:

Т I L S
Т 0,1 - 0,0237 0,01 0
I - 0,0237 0,25 0,079 0
L 0,01 0,079 0,4 0
S 0 0 0 0

Мы собрали необходимую параметрическую информацию и теперь попытаемся сформулировать основную проблему. Во-первых, сумма весов ценных бумаг, со­ставляющих портфель, должна быть равна 1, так как операции ведутся на денеж­ном счете, и каждая ценная бумага полностью оплачена:

где N число ценных бумаг составляющих портфель Х процентный вес ценной - фото 181

где N == число ценных бумаг, составляющих портфель;

Х = процентный вес ценной бумаги L

Важно отметить, что в уравнении (6.04) каждое значение Х должно быть неотрица­тельным числом.

Следующее равенство относится к ожидаемой прибыли всего портфеля — это Е в теории Е — V. Ожидаемая прибыль портфеля является суммой прибылей его компонентов, умноженных на соответствующие веса:

где Е ожидаемая прибыль портфеля N число ценных бумаг составляющих - фото 182

где Е = ожидаемая прибыль портфеля;

N = число ценных бумаг, составляющих портфель;

X i= процентный вес ценной бумаги i;

U i= ожидаемая прибыль ценной бумаги i. И наконец, мы подошли к параметру V, т. е дисперсии ожидаемых прибылей:

Нашей целью является поиск значений Х причем их сумма равна единице которые - фото 183

Нашей целью является поиск значений Х причем их сумма равна единице которые - фото 184

Нашей целью является поиск значений Х (причем их сумма равна единице), ко­торые дают наименьшее значение V для определенного значения Е. Максимизи­ровать (или минимизировать) функцию Н(Х, Y) при наличии условия или огра­ничения G(X, Y) можно с помощью метода Лагранжа. Для этого зададим функцию Лагранжа F(X, Y, L):

(6.07) F(X,Y,L) = H(X,Y) + L * G(X,Y)

Обратите внимание на форму уравнения (6.07). Новая функция F(X,Y,L) равна множителю Лагранжа L (его значение мы пока не знаем), умноженному на огра­ничительную функцию G(X,Y), плюс первоначальная функция H(X,Y), экстре­мум которой мы и хотим найти.

Решение этой системы из трех уравнений даст точки (X 1Y 1) относительного экстремума:

F xX,Y,L) = О F y(X,Y,L) = О F L(X,Y,L) = О

Допустим, мы хотим максимизировать произведение двух чисел при условии, что их сумма равна 20. Пусть Х и Y два числа. Таким образом, H(X,Y) = Х * Y является функцией, которая должна быть максимизирована при нали­чии ограничительной функции G(X,Y) = Х + Y - 20 = 0. Зададим функцию Лагранжа:

F(X,Y,L) = Х * Y + L * (X + Y- 20) F x(X,Y,L)=Y+L F y(X,Y,L)=X+L F L(X,Y,L)=

X +Y-20

Теперь приравняем F^(X,Y,L) и Fy(X,Y,L) нулю и решим каждое из них для полу­чения L:

Y+L=0 Y=-L и

X+L=0 X=-L

Теперь, приняв F L(X,Y,L) = 0, мы получим Х + Y - 20 = 0. Наконец, заме­ним Х и Y эквивалентными выражениями, содержащими L:

(-L) + (-L) - 20 = О 2 * -L - 20 L=-10

Так как Y = -L, то Y = 10 и Х = 10. Максимальное произведение: 10*10= 100.

Метод множителей Лагранжа был продемонстрирован для двух переменных и одной 01раничительной функции. Метод можно также применять, когда есть бо­лее чем две переменные и более чем одна ограничительная функция. Далее для примера следует форма для поиска экстремума, когда есть три переменные и две ограничительные функции:

В этом случае чтобы определить точки относительных экстремумов вам надо - фото 185

В этом случае, чтобы определить точки относительных экстремумов, вам надо ре­шить систему из пяти уравнений с пятью неизвестными. Позже мы покажем, как это сделать.

Сформулируем проблему несколько иначе: необходимо минимизировать V, т.е. дисперсию всего портфеля, с учетом двух следующих ограничений:

где N число ценных бумаг составляющих портфель Е ожидаемая прибыль - фото 186

где N число ценных бумаг составляющих портфель Е ожидаемая прибыль - фото 187

где N= число ценных бумаг, составляющих портфель;

Е = ожидаемая прибыль портфеля;

Х = процентный вес ценной бумаги i;

U. = ожидаемая прибыль ценной бумаги i.

Минимизация ограниченной функции многих переменных может быть проведе­на путем введения множителей Лагранжа и частного дифференцирования по каждой переменной. Поэтому мы сформулируем поставленную задачу в терминах функции Лагранжа, которую назовем Т:

где V дисперсия ожидаемых прибылей портфеля из уравнения 606 N число - фото 188

где V= дисперсия ожидаемых прибылей портфеля из уравнения (6.06);

N = число ценных бумаг, составляющих портфель;

Е = ожидаемая прибыль портфеля;

X. = процентный вес ценной бумаги i;

U. = ожидаемая прибыль ценной бумаги i;

L, = первый множитель Лагранжа;

L = второй множитель Лагранжа.

Мы получим портфель с минимальной дисперсией (т.е. минимальным риском), приравняв к нулю частные производные функции Т по всем переменньм.

Давайте снова вернемся к нашим четырем инвестициям: Toxico, Incubeast Corp., LA Garb и сберегательному счету. Если мы возьмем первую частную произ­водную Т по Х 1, то получим:

Приравняв это выражение нулю и разделив обе части уравнения на 2 получим - фото 189

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x