РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Приравняв это выражение нулю и разделив обе части уравнения на 2, получим:

Таким же образом Таким образом проблему минимизации V при данном Е для - фото 190

Таким же образом:

Таким образом проблему минимизации V при данном Е для портфеля с N - фото 191

Таким образом проблему минимизации V при данном Е для портфеля с N - фото 192

Таким образом, проблему минимизации V при данном Е для портфеля с N компонентами можно решить с помощью системы N + 2 уравнений с N + 2 неиз­вестными. Для случая с четырьмя компонентами обобщенная форма будет иметь следующий вид:

где Е ожидаемая прибыль портфеля Х i процентный вес ценной бумаги i U i - фото 193

где Е ожидаемая прибыль портфеля Х i процентный вес ценной бумаги i U i - фото 194

где Е = ожидаемая прибыль портфеля;

Х i= процентный вес ценной бумаги i;

U i= ожидаемая прибыль по ценной бумаге i;

COV А, Б= ковариация между ценными бумагами А и Б;

L 1= первый множитель Лагранжа;

1 2= второй множитель Лагранжа.

Обобщенную форму можно использовать для любого числа компонентов. Напри­мер, если речь идет о трех компонентах (т.е. N = 3), система уравнений будет выг­лядеть следующим образом:

Прежде чем решать систему уравнений необходимо задать уровень ожидаемой - фото 195

Прежде чем решать систему уравнений, необходимо задать уровень ожидаемой прибыли Е. Решением будет комбинация весов, которая даст искомое Е при наименьшей дисперсии. После того как вы определитесь с выбором Е, у вас бу­дут все входные переменные, необходимые для построения матрицы коэффи­циентов.

Переменная Е в правой части первого уравнения — это значение прибыли. для которой вы хотите определить комбинацию ценных бумаг в портфеле. Первое уравнение говорит о том, что сумма всех ожидаемых прибылей, умноженных на

соответствующие веса, должна равняться заданному Е. Второе уравнение отража­ет тот факт, что сумма весов должна быть равна 1. Была показана матрица для слу­чая с тремя ценными бумагами, но вы можете использовать обобщенную форму для N ценных бумаг.

Возьмем ожидаемые прибыли и ковариации из уже известной таблицы ковариаций и подставим коэффициенты в обобщенную форму. Таким образом из ко­эффициентов обобщенной формы можно создать матрицу. В случае четырех ком­понентов (N = 4) мы получим 6 рядов (N + 2):

X 1 X 2 X 3 X 4 L 1 L 2 Ответ
0,095 0,13 0,21 0,085 Е
1 1 1 1 1
0,1 - 0,0237 0,01 0 0,095 1 0
- 0,0237 0,25 0,079 0 0,13 1 0
0,01 0,079 0,4 0 0,21 1 0
0 0 0 0 0,085 1 0

Отметьте, что мы получили 6 столбцов коэффициентов. Если добавить столбец свободных членов к матрице коэффициентов, мы получим расширенную матрицу.

Заметьте, что коэффициенты в матрице соответствуют нашей обобщенной форме:

Матрица является удобным представлением этих уравнений Чтобы решить систему - фото 196

Матрица является удобным представлением этих уравнений. Чтобы решить сис­тему уравнений, необходимо задать Е. Ответы, полученные при решении этой

системы уравнений, дадут оптимальные веса, минимизирующие дисперсию при­были всего портфеля для выбранного уровня Е.

Допустим, мы хотим найти решение для Е = 0,14, что соответствует прибыли в 14%. Подставив в матрицу 0,14 для Е и нули для переменных L 1и L 2в первых двух строках, мы получим следующую матрицу:

X 1 X 2 Х 3 X 4 L 1 L 2 Ответ
0,095 0,13 0,21 0,085 0 0 0,14
1 1 1 1 0 0 1
0,1 - 0,0237 0,01 0 0,095 1 0
- 0,0237 0,25 0,079 0 0,13 1 0
0,01 0,079 0,4 0 0,21 1 0
0 0 0 0 0,085 1 0

Необходимо найти N + 2 неизвестных с помощью N + 2 уравнений.

Решение систем линейных уравнений с использованием матриц-строк.

Многочлен — это алгебраическое выражение, которое является суммой опреде­ленного количества элементов. Многочлен с одним элементом называется одно­членом, с двумя элементами — двучленом, с тремя — трехчленом и т.д. Выраже­ние 4 * А ^ 3 + А ^ 2 +А+2 является многочленом, имеющим четыре члена. Члены отделены знаком (+).

Многочлены имеют различные степени. Степень многочлена определяется зна­чением наибольшей степени любого из элементов. Степенью элемента является сумма показателей переменных, содержащихся в элементе. Показанное выше вы­ражение является многочленом третьей степени, так как элемент 4 * А^ 3 имеет третью степень, и это наивысшая степень среди всех элементов многочлена. Если бы элемент был равен 4*A^З*B^62*C, мы бы получили многочлен шестой степени, так как сумма показателей переменных (3+2+1) равна 6.

Многочлен первой степени называется также линейным уравнением и графи­чески задается прямой линией. Многочлен второй степени называется квадрат­ным уравнением и на графике представляет собой параболу. Многочлены третьей, четвертой и пятой степени называются соответственно кубическим уравнением, уравнением четвертой степени, уравнением пятой степени и т.д. Графики много­членов третьей степени и выше довольно сложны. Многочлены могут иметь лю­бое число элементов и любую степень, мы будем работать только с линейными уравнениями, т.е. многочленами первой степени. Решить систему линейных уравнений можно с помощью процедуры Гаусса-Жордана, или, что то же самое, метода гауссовского исключения. Чтобы использовать этот метод, мы должны сначала создать расширен­ную матрицу, объединив матрицу коэффициентов и столбец свободных чле­нов. Затем следует произвести элементарные преобразования для получения единичной матрицы. С помощью элементарных преобразований мы получаем более простую, но эквивалентную первоначальной, матрицу. Элементарные преобразования производятся посредством построчных операций (мы опи­шем их ниже). Единичная матрица является квадратной матрицей коэффициентов, где все элементы равны нулю, кроме диагональной линии элементов, которая начинает­ся в верхнем левом углу. Для матрицы коэффициентов «шесть на шесть» единич­ная матрица будет выглядеть следующим образом:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x